根据爱荷华州旅游局 2022 年的游客概况研究,25% 的游客对酿酒厂和品酒感兴趣,而对啤酒厂和酿酒厂感兴趣的游客只有 22%。在游客在爱荷华州的旅行中,13% 的人表示参观了酿酒厂或啤酒厂。报告中没有包括酿酒厂。2022 年,爱荷华州游客在该州花费了近 70 亿美元,但计算其中 13% 到 25% 的影响似乎夸大了啤酒厂、酿酒厂和酿酒厂为爱荷华州带来的好处。第四经济组织对活动范围和参与活动的游客比例进行了估计,以便更好地将旅游业的影响分配给这些部门。这导致了一个更为保守的估计,即游客支出占 3%,并根据其就业份额分配给每个部门。
摘要:利用工程原理重新设计生物体是合成生物学 (SynBio) 的目的之一,因此实验方法和 DNA 部件的标准化变得越来越必要。专注于酿酒酵母工程的合成生物学界一直处于这一领域的前沿,构想出了几种被该界广泛采用的特征明确的合成生物学工具包。在本综述中,我们将讨论为酿酒酵母开发的分子方法和工具包对所需标准化工作的贡献。此外,我们还回顾了为新兴非常规酵母物种设计的工具包,包括解脂耶氏酵母 (Yarrowia lipolytica)、Komagataella phaffii 和马克斯克鲁维酵母 (Kluyveromyces marxianus)。毫无疑问,这些工具包中强调的特征化 DNA 部件与标准化组装策略相结合,极大地促进了许多代谢工程和诊断应用等的快速发展。尽管在常见酵母基因组工程中部署合成生物学的能力不断增强,但酵母界在生物自动化等更复杂、更精细的应用中还有很长的路要走。关键词:标准化、特性、生物部件、酵母工具包、合成生物学、自动化
白色念珠菌细胞壁成分B-葡聚糖已被广泛研究其诱导先天免疫细胞表观遗传和功能重编程的能力,这是一种称为训练有素的免疫。我们表明,来自酿酒酵母的两种单独的B-葡萄糖的高复杂性具有强大的生物活性,从而增强了人类原代单核细胞的训练有素的先天免疫反应。训练需要Dectin-1/CR3,TLR4和MMR受体,以及RAF-1,SYK和PI3K下游信号分子。通过激活多个受体和下游信号通路,该B-葡聚糖制剂的组成部分能够协同作用,从而在无关挑战的情况下引起强大的次要响应。在黑色素瘤和膀胱细胞癌的体内鼠模型中,对B-葡聚糖制剂进行的小鼠进行预处理导致肿瘤生长的显着降低。这些见解可能有助于基于B-葡聚糖结构的未来疗法开发,从而引起有效的训练有素的免疫反应。
任何人都可以自由访问可作为“开放访问”的作品的全文。可根据创意共享许可提供的作品可根据所述许可条款和条件使用。使用所有其他作品的使用要求正确持有人(作者或出版商)同意,如果不符合适用法律的版权保护。
基于糖蜜的酿酒厂会产生大量的花费,这是一种主要的环境污染物,由于其高的有机负荷和深棕色。这种颜色主要是由黑色素蛋白引起的,黑色素蛋白是通过Maillard反应形成的,Maillard反应是糖和氨基酸之间的非酶促过程。在这项研究中,从40个分离株中选择了八种有希望的细菌菌株,并指定为S1,S2,S3,S4,S5,S5,S6,S7和S8。这些分离株被筛选,以使用定性和定量分析,使酿酒厂消失的洗涤液脱色。中,分离株S5在不同的洗涤浓度(10%,20%和40%)中表现出最高的脱色潜力。值得注意的是,在10%的浓度下,分离株S5完全(100%)脱色,使其成为本研究中最有效的菌株。基于初步表征,分离株S5试初步鉴定为倾斜物种。其特殊的脱色能力表明,它在酿酒厂的生物修复中具有巨大的商业应用潜力。有关优化环境条件并扩大过程的进一步研究,可以为生态友好且具有成本效益的解决方案铺平道路,以减轻酿酒厂废水的环境影响。简介糖蜜酿酒厂是工业污染的主要因素,产生了大量的高强度废水,其生化氧需求(BOD)和化学氧需求(COD)显着升高。这些分离株通过定性和定量分析筛查了消耗清洗的能力。酿酒厂花费的洗涤物中的主要污染物之一是黑色素素,这是一种复杂的化合物,它是通过maillard反应形成的,是糖和氨基酸之间的非酶相互作用。黑色素素特别关注的是,通过减少水体的光渗透,改变微生物生态系统并抑制植物的生长,从而有助于环境降解。[1]在这项研究中,从总共40个分离株中选择了八种有希望的细菌菌株,并指定为S1,S2,S3,S4,S4,S5,S6,S7和S8。中,分离株S5在不同的洗涤浓度(10%,20%和40%)时表现出最高的脱色潜力。值得注意的是,在10%的浓度下,分离株S5在指定时期内达到100%脱色,使其成为最有效的应变。初步鉴定分离株S5作为planococcus物种,强调了其在生物修复中的商业应用的潜力。鉴于其效率,进一步的研究应着重于优化环境参数,并扩大工业应用的脱色过程。成功实施这种微生物方法可以提供
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
4-羟基苯甲酸(PHBA)是粘酸和液晶聚合物的重要工业前体,其生产基于石化工业。为了减少我们对化石燃料的依赖并提高可持续性,微生物工程是一种更具吸引力的方法,用于替代传统的化学技术。但是,微生物菌株的优化仍然受筛选阶段的高度限制。生物传感器通过减少筛选时间并实现更高的吞吐量来帮助减轻这一问题。在本文中,我们构建了一个名为SBAD的合成生物传感器,由R. palustris的HBAR的PHBA结合结构域组成,N-terminus的Lexa DNA结合结构域和C-Terminus的反式激活域B112。在存在不同的苯甲酸衍生物的情况下测试了SBAD的响应,并通过流量细胞仪测量细胞荧光输出。除了其他羧酸(包括P-氨基苯甲酸),水杨酸,蒽,阿司匹林和苯甲酸在内的其他羧酸之外,还发现了生物传感器通过培养基中外部添加PHBA激活。此外,我们能够证明该生物传感器可以检测到遗传修饰的酵母菌菌株中PHBA的体内产生。在生物传感器荧光和PHBA浓度之间观察到了良好的线性。因此,该生物传感器将非常适合作为高吞吐量筛选工具,可通过代谢工程生产苯甲酸衍生物。
这项研究评估了饮食中的葡萄球菌酿酒酵母和酿酒酵母对疫苗接种的鸟类的免疫力,以疫苗接种了甲壳虫的鸟类和沙门氏菌。总共将105个男性柯布500个肉鸡分为四组:T1(接种疫苗,无补充,n = 30),T2(接种疫苗,S。Boulardii补充剂,n = 30),T3(接种疫苗,S。cerevisiae补充剂,补充剂,n = 30),n = 30)和T4(无疫苗接种,无补充,n = 15)。鸡接受玉米豆饮食,用1x10 7 cfu/g的s。boulardii或S. cerevisiae接受42天。通过间接ELISA和白细胞计数评估免疫反应。在21天后,两个补充组的IGY水平明显高于接种疫苗的对照(p <0.05)。S。boulardii补充增加了淋巴细胞(p = 0.003)和杂脂降低(p = 0.004),而酿酒酵母没有显着影响。在42天的酿酒酵母和boulardii组中,杂质/淋巴细胞比分别降低了23.4%和32.8%,在21天时没有变化。这些结果表明,Boulardii和S.酿酒酵母可以提高肉鸡的免疫力和整体健康状况。
花青素是在红葡萄,葡萄酒及其副产品中发现的多酚。本科学论文回顾了它们在葡萄组织中的生理意义,他们在酿酒和葡萄酒老化期间进行的生化转化,潜在的应用在食品工业中以及与之相关的健康益处。该论文阐明了影响其葡萄酒中提取,稳定性和成分的因素,并探索了它们在各种食品中的应用以及使用Pomace可持续酿酒的可能性。本文重点介绍了花色苷对产品质量和消费者偏好的广泛影响,并突出了针对人类健康状况的潜在预防和治疗应用。总的来说,这一综合概述为花青素的多方面角色提供了宝贵的见解,为未来研究花序素在农业,食品科学和医学中的应用铺平了道路。
特质酵母处理 - 酵母+酵母菌植物高度(cm)59.16 66.51(+12)分支机构数量植物-1 05.00 06.13(+23)叶植物的数量-1 84.13 90.38(+07)叶(+07)叶(+07)叶(+2)19.83 23.83 23.13(+2工厂)种子植物-1 39.38 52.63(+34)10种种子的重量11.84 13.40(+13)干重植物-1 19.98 22.64(+13)种子产量植物-1 69.66 83.71(+20)个体值是在不同的酵母处理下的八个复制的平均值。值表明从对照处理(-yeast)到(+酵母)的百分比增加。