摘要:现代工业酿酒以使用特定的葡萄酒菌株发酵剂为基础。商业葡萄酒菌株比天然分离物具有多种优势,它们的使用保证了工业酿酒技术的稳定性和可重复性。对于竞争激烈的葡萄酒市场以及对提高葡萄酒质量和葡萄酒安全性的新需求,开发新的酵母菌株变得越来越重要。在过去的几十年里,在实验室中创造升级的葡萄酒酵母的新可能性出现了,从而开发出具有更好发酵能力的菌株,能够改善葡萄酒的感官品质并生产针对特定消费者的葡萄酒,考虑到他们的健康和营养需求。然而,只有两种转基因 (GM) 葡萄酒酵母菌株正式注册并获准用于商业用途。与传统的基因工程方法相比,CRISPR/Cas9 被描述为高效、多功能、廉价、易于使用,并且能够靶向多个位点。该基因工程技术自 2013 年以来已应用于酿酒酵母。在这篇评论中,我们旨在概述 CRISPR/Cas9 编辑技术在葡萄酒酵母中的应用,以结合开发能够增加葡萄酒中风味化合物而不会产生异味的表型,并有助于创造“更安全的葡萄酒”。
生物技术育种方法应用于木本植物的主要瓶颈是由于几种基因型表现出的体外再生困难。另一方面,木本植物,尤其是葡萄树(Vitis vinifera L.),使用大部分农药和其他昂贵的农业投入,因此开发有效的遗传改良方法迫在眉睫。基因组编辑是一种非常有前途的技术,特别是对于酿酒葡萄基因型,因为它允许在一个步骤中修改所需的基因,保留在优良品种中选定和重视的所有品质性状。本文报道了一种用于生产无转基因葡萄植物的基因组编辑和再生方案,利用脂质转染胺介导的 CRISPR - Cas9 核糖核蛋白(RNP)直接递送以靶向八氢番茄红素去饱和酶基因。我们重点研究了内比奥罗 (V. vinifera),这是一种极难在体外生长的葡萄酒基因型,可用来生产优质葡萄酒,例如巴罗洛和巴巴莱斯科。文献中提供的用于高度胚胎发生的葡萄树基因型的 PEG 介导的编辑方法无法使难生长的内比奥罗获得正常的胚胎发育。相反,脂质转染剂对原生质体活力和植物再生没有负面影响,转染后约 5 个月即可获得完全发育的编辑植物。我们的工作是使用脂质转染剂在植物原生质体中递送编辑试剂的首批例子之一。在酿酒葡萄基因型育种方面取得的重要成果可以扩展到其他重要的酿酒葡萄品种和难生长的木本植物。
目前,美国是世界第四大葡萄酒生产国,葡萄是美国价值最高的水果作物,2007 年至 2014 年间,葡萄酒生产厂数量估计增长了 61%。2014 年美国葡萄酒出口额估计为 15.5 亿美元。这种扩张,加上种植、收获和生产技术的快速进步,大大增加了对高技能工人的需求。位于华盛顿州葡萄酒产区中心的雅基马谷社区学院及其合作的两年制学院正在为准备以该领域熟练技术人员身份进入劳动力市场的学生提供酿酒学(葡萄酒和酿酒科学)和葡萄栽培(葡萄种植和葡萄收获)方面的高等教育和培训。
167 168图1。L.(L。)墨西哥具有保存良好的NAT10同源物。A.在人类,墨西哥L.和S. cerevisiae中分布169个Nat10域。所有三个物种共享Nat10酶功能的170个必需域:TMCA,解旋酶,GNAT和TRNA。每个域上方的数字171表示每个域内氨基酸的起点和末端位置。172不同利什曼原虫物种和酿酒酵母之间Nat10的序列身份约为173,约为36%,而L.(L。)墨西哥和人类Nat10之间的身份为39.4%。174 L.(L。)墨西哥的GNAT结构域分别显示为43.86%和46.43%的序列身份,分别与175个酿酒酵母和人类中的175个相应域。B.预测了L.(L。)墨西哥,酿酒酵母的176 Nat10蛋白的3D结构,以及人类突出了GNAT(蓝色),177个TRNA结合(红色),TMCA(紫色)和解旋酶(绿色)(绿色)领域,表明L.(L.)178墨西哥蛋白质具有高度的水平。179 C. GNAT结构域的结构覆盖层显示了三种蛋白质中的高度结构保护180,进一步说明了该关键功能域中的相似性。181 182
3.Shin, M. H., Park, H., Kim, S., Oh, E. J. , Jeong, D., Florencia, C., Kim, K. H., Jin, Y. S., 和 Kim, S. R. 2021.糖酵解基因失活引起的转录组变化及其对酿酒酵母戊糖代谢的优势。生物工程和生物技术前沿 9, 654177。4.Jeong, D., Park, H., Jang, B. K., Ju, Y., Shin, M. H., Oh, E. J. , Lee, E. J., and Kim, S. R. 2021。柑橘皮废料生物增值转化为燃料和化学品的最新进展。生物资源技术 323, 124603。5.Lacerda, M. P., Oh, E. J. 和 Eckert, C. 2020。模型系统酿酒酵母与新兴非模型酵母在生物燃料生产中的比较。Life 10(11), 299.6.Jeong, D*., Oh, E.J.* , Ko, J. K., Nam, J. O., Park, H. S., Jin, Y. S., Lee, E. J., and Kim, S. R. 2020.酿酒酵母中木糖分解代谢途径异源表达的代谢工程考虑因素。PLoS ONE 15(7), e0236294。(* 同等贡献) 7.Oh, E. J. , Liu, R., Liang, L., Freed, E. F., Eckert, C. A., 和 Gill, R. T. 2020.利用酵母表面展示平台进行抗体片段的多重进化。ACS Synthetic Biology 9(8), 2197-2202。8.Choudhury, A., Fankhauser, R. G., Freed, E. F., Oh, E. J. , Morgenthaler, A.B., Bassalo, M. C., Copley, S. D., Kaar, J. L., 和 Gill, R. T. 2020.大肠杆菌中 Cas9 介导重组工程高效编辑的决定因素。ACS Synthetic Biology 9(5), 1083-1099。9.Park, H., Jeong, D., Shin, M. H., Kwak, S., Oh, E. J. , Ko, J. K., 和 Kim, S. R. 2020.酿酒酵母在将热液预处理的木质纤维素生物质转化为乙醇的过程中对木糖的利用。应用微生物学和生物技术 104, 3245-3252。10.Oh, E. J. 和 Jin, Y. S. 2020.酿酒酵母工程改造以实现高效
摘要:酿酒酵母作为一种公认安全 (GRAS) 真菌,已成为工业应用和基础研究中最广泛使用的底盘细胞之一。然而,由于其复杂的遗传背景和相互交织的代谢网络,仍然有许多障碍需要克服,以改善所需特性并成功地将基因型与表型联系起来。在此背景下,基因组编辑和进化技术在过去几十年中迅速发展,以促进快速产生定制特性以及精确确定调节生理功能的相关基因靶标,包括抗逆性、代谢途径优化和生物体适应性。定向基因组进化已成为一种多功能工具,使研究人员能够获得所需特性并研究日益复杂的现象。本文回顾了酿酒酵母定向基因组进化的发展,重点介绍了推动进化工程的不同技术。
生物转化将各种食物废物的生物转化为特定有价值的产品,例如单细胞蛋白(SCP)具有同时的潜力,可以通过获得经济食品和饲料产品来解决全球饮食蛋白缺乏症,并通过使用这些废物作为高营养价值生产的基质来获得环境污染物的大量缓解。因此,本研究旨在评估使用酿酒酵母和hansenii的酵母分离株生产SCP的可行性,并评估生成的SCP的蛋白质质量。结果表明,用于生长酵母菌株的马铃薯果皮培养基是生产SCP的最佳培养基,而酿酒酵母大于D. hansenii,用于生产更高量的生物质,粗蛋白,总氨基酸和核黄素。各种废物中各种特定有价值的SCP的生物转化代表了解决蛋白质缺乏问题并通过利用食物废物作为底物来减少环境污染物的有希望的前景。关键词:单细胞蛋白,食物废物,酵母液态发酵,生物量,氨基酸,核黄素。
抗聚糖抗体 (AGA) 包括 ACCA(抗壳聚糖苷)、ALCA(抗层状聚糖苷)和 AMCA(抗甘露二糖苷),是克罗恩病 (CD) 特异性抗体,靶向微生物(例如白色念珠菌和酿酒酵母)中的聚糖(多糖)。它们可能会改变对真菌菌群失调的免疫反应。与 gASCA(抗酿酒酵母)一起使用时,患者血清中 AGA 的存在可将 CD 与溃疡性结肠炎 (UC) 和非 IBD 区分开来,特异性约为 85%。此外,2 个或更多 AGA 同时呈阳性会增加 CD 特异性(>95%),并预测会更快进展为更严重的疾病,并伴有狭窄和瘘管。AGA 的诊断准确性已得到十几项独立的同行评审研究的验证,这些研究涉及 4,000 多名 IBD 患者。 1 AGA 在临床实践中的最新应用和实际表现尚未得到表征。