最近发表的研究表明,可以通过添加钠 - 葡萄糖kotransporter 2(SGLT2)以及非类固醇矿体矿物质型 - 甲状腺粒 - 甲状腺胶质体拮抗剂拮抗剂,可以进一步增强肾素 - 英语(RAS)抑制剂(RAS)抑制剂(RAS)抑制剂十烯。同时增加血浆肾素活性的血清醛固酮的价值发生在大约20%的耐药性高血压患者中,其中15%的轻度至中度高血压患者中有15%,但约10%的健康患者也会发生。1催化醛固酮在“必需”高血压的发病机理中也起着重要作用,并且常常无法诊断。慢性肾脏疾病(CKD)患者的醛固酮合成增加可加速肾功能不全的进展。醛固酮通过刺激炎症和纤维化而切换到肾小球硬化,肾小管间质纤维化和血管肾硬化。2
九州大学医学院的小川义博教授、孙江宏义项目助理教授以及该大学医学院的研究生金子大辉等人的研究小组利用人工智能(AI)技术,成功开发出仅使用三种易于测量的血液检测项目(醛固酮、钾和钠)就能高精度地预测疾病类型的模型。该AI技术可早期发现在初级保健阶段而非在专科医疗机构可通过手术治愈的疾病患者,从而提供高效且适当的治疗,并有望提高医疗质量。
血清醛固酮值与CKD进展的11%有关,无论是否存在糖尿病[2]。实际上,甲状腺醛固酮受体拮抗剂螺内酯对醛固酮受体抑制醛固酮受体可在心力衰竭和射血分数降低的患者中降低30%的死亡风险[3]。此外,在2型糖尿病和CKD患者中,非甾体醛固酮受体拮抗剂的使用与心血管(CV)事件的减少有关[4]。实现醛固酮阻滞的另一种方法是干扰醛固酮合酶的合成。由于后一种酶与11-β-羟化酶具有93%的同源性,因此负责皮质醇合成的酶设计的ASIS应具有高度选择性,可高度选择性抑制醛固酮合酶而不抑制11-β-羟基酶和皮质醇的生产[5]。
原发性醛固酮主义(PA)是一种临床综合征,主要以肾上腺皮质(1,2)醛固酮为分泌过度分泌,其特征是水和钠,高血压或低钾血症。pa是继发性高血压最常见的原因之一,高血压患者的PA比例约为10%,在难治性高血压患者中约为20%(3,4)。产生醛固酮的腺瘤(APA)是PA的最常见亚型。它通常发生在肾上腺皮质的肾小球区,是产生和分泌醛固酮的良性肿瘤。APA通常会引起严重的高血压,并且常用的降压药的功效较差(5)。常用的APA治疗是APA切除,单侧APA切除后,患者的血压在1年内降低至正常,其他主要症状的70%以上消失了(6)。在APA切除之前,通常使用药物治疗来帮助患者调整其身体状态。同时,当某些患者无法接受外科治疗时,药物治疗也通常用于降低血压或补充钾,以减少APA的危害(7)。分子研究醛固酮的生产已经发现,体细胞突变可以有助于APA的发展,而CYP11B2(细胞色素p450 11B2)基因编码的醛固酮合酶是醛固酮合成的必不可少的酶,并参与APA的发病机制(8)。研究发现,醛固酮的过度分泌与过表达有关
引言高血压影响着大约三分之一的成年人口(1),是世界范围内发病率和死亡率的主要原因(2)。大多数病例都是原发性的。大约10%的患者被发现患有致病的潜在疾病(继发性高血压)。原发性醛固酮增多症(PA),即肾上腺类固醇激素醛固酮的过量产生,是继发性高血压最常见的原因。PA影响着全世界至少5000万人(3),但最近的研究发现,在>10%的正常血压个体和>20%的高血压患者(4)中有部分自主性醛固酮生成。PA可由产生醛固酮的腺瘤(良性肿瘤)、多发性产生醛固酮的微结节(较小的病变)或肾上腺弥漫性增生(5)引起。健康人也会出现产生醛固酮的微结节(6)。超过 95% 的醛固酮腺瘤和 60%–80% 的无腺瘤 PA 患者微结节携带已知疾病基因的体细胞突变 (7) 。2013 年,我们和其他研究人员发现 CACNA1D 基因中的杂合体细胞功能获得性突变,该基因编码电压门控 L 型钙通道 Ca V 1.3,是醛固酮腺瘤的原因 (8, 9) 。这些突变占近期欧洲血统个体肿瘤的 ~20%、近期非洲血统个体肿瘤的 ~40% 和亚洲血统个体肿瘤的 ~15%。由于未知原因,它们在男性中比在女性中更为普遍 (10) 。CACNA1D 是最常见的
1。Crowley SD,Gurley SB,Oliverio MI等。 通过肾素 - 血管紧张素系统调节血压调节肾脏和全身组织的不同作用。 J Clin Invest。 2005; 115:1092 --- 9。 2。 Wan Y,Shang J,Graham R等。 武汉新型冠状病毒的受体识别:基于SARS冠状病毒的十年结构研究的分析。 J Virol。 2020; 94:1 --- 9。 3。DeSimone G. ESC委员会在ACE抑制剂和血管紧张素受体阻滞剂上的升高委员会的立场声明; 2020 https://www.escardio.org/councils/council-on-hypertension-(cht)/news/news/position/position-statement-of-the-esc-council-on-- hypertension-on-ace beas-ace-ace n-ace-ace un-ace un-ace and-ace and-ace and-ang ang ang ang ang ang ang ang [访问16.3.20]。 4。 Mancia G,Rea F,Ludergnani M等。 肾素---血管紧张素---醛固酮系统阻滞剂和Covid-19的风险。 n Engl J Med。 2020:1 --- 10,http://dx.doi.org/10。 1056/nejmoa2006923。Crowley SD,Gurley SB,Oliverio MI等。通过肾素 - 血管紧张素系统调节血压调节肾脏和全身组织的不同作用。J Clin Invest。2005; 115:1092 --- 9。 2。 Wan Y,Shang J,Graham R等。 武汉新型冠状病毒的受体识别:基于SARS冠状病毒的十年结构研究的分析。 J Virol。 2020; 94:1 --- 9。 3。DeSimone G. ESC委员会在ACE抑制剂和血管紧张素受体阻滞剂上的升高委员会的立场声明; 2020 https://www.escardio.org/councils/council-on-hypertension-(cht)/news/news/position/position-statement-of-the-esc-council-on-- hypertension-on-ace beas-ace-ace n-ace-ace un-ace un-ace and-ace and-ace and-ang ang ang ang ang ang ang ang [访问16.3.20]。 4。 Mancia G,Rea F,Ludergnani M等。 肾素---血管紧张素---醛固酮系统阻滞剂和Covid-19的风险。 n Engl J Med。 2020:1 --- 10,http://dx.doi.org/10。 1056/nejmoa2006923。2005; 115:1092 --- 9。2。Wan Y,Shang J,Graham R等。 武汉新型冠状病毒的受体识别:基于SARS冠状病毒的十年结构研究的分析。 J Virol。 2020; 94:1 --- 9。 3。DeSimone G. ESC委员会在ACE抑制剂和血管紧张素受体阻滞剂上的升高委员会的立场声明; 2020 https://www.escardio.org/councils/council-on-hypertension-(cht)/news/news/position/position-statement-of-the-esc-council-on-- hypertension-on-ace beas-ace-ace n-ace-ace un-ace un-ace and-ace and-ace and-ang ang ang ang ang ang ang ang [访问16.3.20]。 4。 Mancia G,Rea F,Ludergnani M等。 肾素---血管紧张素---醛固酮系统阻滞剂和Covid-19的风险。 n Engl J Med。 2020:1 --- 10,http://dx.doi.org/10。 1056/nejmoa2006923。Wan Y,Shang J,Graham R等。武汉新型冠状病毒的受体识别:基于SARS冠状病毒的十年结构研究的分析。J Virol。2020; 94:1 --- 9。3。DeSimone G. ESC委员会在ACE抑制剂和血管紧张素受体阻滞剂上的升高委员会的立场声明; 2020 https://www.escardio.org/councils/council-on-hypertension-(cht)/news/news/position/position-statement-of-the-esc-council-on-- hypertension-on-ace beas-ace-ace n-ace-ace un-ace un-ace and-ace and-ace and-ang ang ang ang ang ang ang ang [访问16.3.20]。4。Mancia G,Rea F,Ludergnani M等。 肾素---血管紧张素---醛固酮系统阻滞剂和Covid-19的风险。 n Engl J Med。 2020:1 --- 10,http://dx.doi.org/10。 1056/nejmoa2006923。Mancia G,Rea F,Ludergnani M等。肾素---血管紧张素---醛固酮系统阻滞剂和Covid-19的风险。n Engl J Med。2020:1 --- 10,http://dx.doi.org/10。1056/nejmoa2006923。
1。Verma A,Vaidya A,Subudhi S,Waikar SS。醛固酮在慢性儿童疾病和肾脏结局中。EUR HEART j。 2022; 43(38):3781-3791。 2。 Garg V,Kumar M,Mahapatra HS,Chitkara A,Gadpayle AK,Sekhar V.糖尿病前肾病中的新型尿液生物标志物。 临床肾上腺素。 2015; 19(5):895-900。 3。 NAMSolleck P,Unger T.心脏和肾脏疾病中的醛固酮合酶抑制剂。 肾词表盘移植。 2014; 29(增刊1):I62-I68。 4。 Tuttle KR,Agarwal R,Alpers CE等。 分子机制和糖尿病肾脏疾病的治疗靶标。 肾脏Int。 2022; 102(2):248-260。 5。 Shrestha A,Che RC,Zhang Ah。 醛固酮在肾纤维化中的作用。 Adv Exp Med Biol。 2019; 1165:325-346。 6。 Rossing P,Caramori ML,Chan JCN等。 KDIGO 2022临床实践指南的执行摘要慢性肾脏疾病:基于迅速出现的新证据的更新。 肾脏Int。 2022; 102(5):990-999。 7。 Andersen K,Hartman D,Peppard T等。 醛固酮合酶抑制对高血压患者醛固酮和皮质醇的影响:II期,随机,双盲,安慰剂控制,多中心研究。 J临床高血压(格林威治)。 2012; 14(9):580-587。 8。 Hargovan M,Ferro A.醛固酮合酶抑制剂在高血压中:当前状态和未来的可能性。EUR HEART j。2022; 43(38):3781-3791。2。Garg V,Kumar M,Mahapatra HS,Chitkara A,Gadpayle AK,Sekhar V.糖尿病前肾病中的新型尿液生物标志物。临床肾上腺素。2015; 19(5):895-900。 3。 NAMSolleck P,Unger T.心脏和肾脏疾病中的醛固酮合酶抑制剂。 肾词表盘移植。 2014; 29(增刊1):I62-I68。 4。 Tuttle KR,Agarwal R,Alpers CE等。 分子机制和糖尿病肾脏疾病的治疗靶标。 肾脏Int。 2022; 102(2):248-260。 5。 Shrestha A,Che RC,Zhang Ah。 醛固酮在肾纤维化中的作用。 Adv Exp Med Biol。 2019; 1165:325-346。 6。 Rossing P,Caramori ML,Chan JCN等。 KDIGO 2022临床实践指南的执行摘要慢性肾脏疾病:基于迅速出现的新证据的更新。 肾脏Int。 2022; 102(5):990-999。 7。 Andersen K,Hartman D,Peppard T等。 醛固酮合酶抑制对高血压患者醛固酮和皮质醇的影响:II期,随机,双盲,安慰剂控制,多中心研究。 J临床高血压(格林威治)。 2012; 14(9):580-587。 8。 Hargovan M,Ferro A.醛固酮合酶抑制剂在高血压中:当前状态和未来的可能性。2015; 19(5):895-900。3。NAMSolleck P,Unger T.心脏和肾脏疾病中的醛固酮合酶抑制剂。肾词表盘移植。2014; 29(增刊1):I62-I68。 4。 Tuttle KR,Agarwal R,Alpers CE等。 分子机制和糖尿病肾脏疾病的治疗靶标。 肾脏Int。 2022; 102(2):248-260。 5。 Shrestha A,Che RC,Zhang Ah。 醛固酮在肾纤维化中的作用。 Adv Exp Med Biol。 2019; 1165:325-346。 6。 Rossing P,Caramori ML,Chan JCN等。 KDIGO 2022临床实践指南的执行摘要慢性肾脏疾病:基于迅速出现的新证据的更新。 肾脏Int。 2022; 102(5):990-999。 7。 Andersen K,Hartman D,Peppard T等。 醛固酮合酶抑制对高血压患者醛固酮和皮质醇的影响:II期,随机,双盲,安慰剂控制,多中心研究。 J临床高血压(格林威治)。 2012; 14(9):580-587。 8。 Hargovan M,Ferro A.醛固酮合酶抑制剂在高血压中:当前状态和未来的可能性。2014; 29(增刊1):I62-I68。4。Tuttle KR,Agarwal R,Alpers CE等。分子机制和糖尿病肾脏疾病的治疗靶标。肾脏Int。 2022; 102(2):248-260。 5。 Shrestha A,Che RC,Zhang Ah。 醛固酮在肾纤维化中的作用。 Adv Exp Med Biol。 2019; 1165:325-346。 6。 Rossing P,Caramori ML,Chan JCN等。 KDIGO 2022临床实践指南的执行摘要慢性肾脏疾病:基于迅速出现的新证据的更新。 肾脏Int。 2022; 102(5):990-999。 7。 Andersen K,Hartman D,Peppard T等。 醛固酮合酶抑制对高血压患者醛固酮和皮质醇的影响:II期,随机,双盲,安慰剂控制,多中心研究。 J临床高血压(格林威治)。 2012; 14(9):580-587。 8。 Hargovan M,Ferro A.醛固酮合酶抑制剂在高血压中:当前状态和未来的可能性。肾脏Int。2022; 102(2):248-260。5。Shrestha A,Che RC,Zhang Ah。醛固酮在肾纤维化中的作用。Adv Exp Med Biol。2019; 1165:325-346。 6。 Rossing P,Caramori ML,Chan JCN等。 KDIGO 2022临床实践指南的执行摘要慢性肾脏疾病:基于迅速出现的新证据的更新。 肾脏Int。 2022; 102(5):990-999。 7。 Andersen K,Hartman D,Peppard T等。 醛固酮合酶抑制对高血压患者醛固酮和皮质醇的影响:II期,随机,双盲,安慰剂控制,多中心研究。 J临床高血压(格林威治)。 2012; 14(9):580-587。 8。 Hargovan M,Ferro A.醛固酮合酶抑制剂在高血压中:当前状态和未来的可能性。2019; 1165:325-346。6。Rossing P,Caramori ML,Chan JCN等。KDIGO 2022临床实践指南的执行摘要慢性肾脏疾病:基于迅速出现的新证据的更新。肾脏Int。 2022; 102(5):990-999。 7。 Andersen K,Hartman D,Peppard T等。 醛固酮合酶抑制对高血压患者醛固酮和皮质醇的影响:II期,随机,双盲,安慰剂控制,多中心研究。 J临床高血压(格林威治)。 2012; 14(9):580-587。 8。 Hargovan M,Ferro A.醛固酮合酶抑制剂在高血压中:当前状态和未来的可能性。肾脏Int。2022; 102(5):990-999。7。Andersen K,Hartman D,Peppard T等。 醛固酮合酶抑制对高血压患者醛固酮和皮质醇的影响:II期,随机,双盲,安慰剂控制,多中心研究。 J临床高血压(格林威治)。 2012; 14(9):580-587。 8。 Hargovan M,Ferro A.醛固酮合酶抑制剂在高血压中:当前状态和未来的可能性。Andersen K,Hartman D,Peppard T等。醛固酮合酶抑制对高血压患者醛固酮和皮质醇的影响:II期,随机,双盲,安慰剂控制,多中心研究。J临床高血压(格林威治)。2012; 14(9):580-587。8。Hargovan M,Ferro A.醛固酮合酶抑制剂在高血压中:当前状态和未来的可能性。JRSM心脏脉络。2014; 3:2048004014522440。9。lu Y,Ku E,Campese VM。醛固酮在慢性肾脏疾病和蛋白尿的发病机理中。Curr Hypertens Rep。2010; 12(4):303-306。2010; 12(4):303-306。
APA和CPA的策略是不同的。在手术治疗方面,CPA是患病一侧的肾小球切除术,而APA在患病方面是完全肾上腺切除术,因此需要准确的鉴别诊断来指导临床治疗计划(2)。 但是,患有APA或CPA的患者显示出一些相似的临床症状和大量的常规成像表现重叠,这使分化很难。 尽管肾上腺静脉抽样(AVS)的经皮插管是APA诊断的“黄金标准”,但该程序的难度,成本和侵入性限制了其在临床实践中的广泛使用。 在传统的成像检查中,评估主要基于肿瘤的大小,密度,边界和增强度,帮助放射学家和临床医生区分肾上腺肿块是肾上腺瘤还是非腺瘤。 其他将ACA功能作为APA或CPA的功能进一步区分(3)。 作为成像技术,双能计算机断层扫描(DECT)或称为Spectrum CT具有为组织内部各种材料提供多种定量信息(4)的优点,以阐明良性和恶性肿瘤(5,6)。 DECT可以通过覆盖更广泛的能量参数来直接准确地反映病变中的血液供应和血管生成状态,从而提供更丰富的定性和定量诊断信息。 到目前为止,据我们所知,使用这种成像模式将APA与CPA区分开的几乎没有相关的报告。 COM/ARTICE/VIEW/10.21037/QIMS-22-1279/RC)。在手术治疗方面,CPA是患病一侧的肾小球切除术,而APA在患病方面是完全肾上腺切除术,因此需要准确的鉴别诊断来指导临床治疗计划(2)。但是,患有APA或CPA的患者显示出一些相似的临床症状和大量的常规成像表现重叠,这使分化很难。尽管肾上腺静脉抽样(AVS)的经皮插管是APA诊断的“黄金标准”,但该程序的难度,成本和侵入性限制了其在临床实践中的广泛使用。在传统的成像检查中,评估主要基于肿瘤的大小,密度,边界和增强度,帮助放射学家和临床医生区分肾上腺肿块是肾上腺瘤还是非腺瘤。其他将ACA功能作为APA或CPA的功能进一步区分(3)。作为成像技术,双能计算机断层扫描(DECT)或称为Spectrum CT具有为组织内部各种材料提供多种定量信息(4)的优点,以阐明良性和恶性肿瘤(5,6)。DECT可以通过覆盖更广泛的能量参数来直接准确地反映病变中的血液供应和血管生成状态,从而提供更丰富的定性和定量诊断信息。到目前为止,据我们所知,使用这种成像模式将APA与CPA区分开的几乎没有相关的报告。COM/ARTICE/VIEW/10.21037/QIMS-22-1279/RC)。我们研究的目的是探索APA和CPA之间能量谱参数的差异,筛选有意义的能量谱指标,并为两者的鉴别诊断提供了理论基础。我们按照明星报告清单介绍本文(可在https://qims.amegroups。
a 内分泌、糖尿病与代谢 b 临床生物化学实验室 c 外科 d 都灵大学健康与科学大学医院放射科,意大利都灵 联系人:Mirko Parasiliti-Caprino,医学博士,哲学博士;都灵大学健康与科学大学医院内分泌、糖尿病与代谢;意大利都灵 Corso Dogliotti 14,邮编 10126。电话:+39 0116709559;电子邮箱:mirko.parasiliticaprino@unito.it。缩写:ABPM,动态血压监测;AH,动脉高血压;APA,醛固酮腺瘤;ARR,醛固酮与肾素比率;AVS,肾上腺静脉取样;BAH,双侧肾上腺增生;BP,血压;cIMT,颈动脉内膜中层厚度; CKD-EPI,慢性肾脏病流行病学合作;CVD,心血管疾病;DM,糖尿病;eRH,原发性难治性高血压;HR,心率;HRV,心率变异性;LVH,左心室肥大;PAC,血浆醛固酮浓度;PRA,血浆肾素活性;ReH,难治性高血压;SIT,盐水输注试验。摘要目的评估难治性和难治性高血压患者原发性醛固酮增多症的患病率及其与心脏代谢并发症的关系。方法对 110 例连续患有真性难治性高血压 [尽管采取了适当的生活方式措施并使用至少三类抗高血压药物(包括利尿剂)治疗,血压仍控制不佳] 且既往无心血管事件的患者进行继发性高血压筛查。如果使用了至少五种抗高血压药物,血压仍未得到控制,则诊断为难治性高血压。
图1:肾素 - 血管紧张素 - 醛固酮系统(RAAS)。 由肝脏产生的血管紧张素原质由肾素转化为血管紧张素I,该肾脏由肾脏分泌。 an- giotensin I通过肺中的血管紧张素转换酶(ACE)进一步转化为血管紧张素II。 血管紧张素II作用于其受体,以刺激各种生理反应,包括血管血管的血管收缩,刺激大脑的交感神经流出,液体保留和肾脏中的钠,醛固酮分泌,肾上腺腺体中的醛固酮分泌,以及心脏中的肥大和纤维化。 药物,例如肾素抑制剂(例如Aliskiren),ACE抑制剂(例如Capteropril,Enalapril,Ramipril)和Angiotensin II受体阻滞剂(Arbs;例如,Irbesartan,Losartan,Losartan,Losartan,Valsartan,Valsartan,Valsartan)目标特定点在此途径中,以管理高度和相关条件。图1:肾素 - 血管紧张素 - 醛固酮系统(RAAS)。由肝脏产生的血管紧张素原质由肾素转化为血管紧张素I,该肾脏由肾脏分泌。an- giotensin I通过肺中的血管紧张素转换酶(ACE)进一步转化为血管紧张素II。血管紧张素II作用于其受体,以刺激各种生理反应,包括血管血管的血管收缩,刺激大脑的交感神经流出,液体保留和肾脏中的钠,醛固酮分泌,肾上腺腺体中的醛固酮分泌,以及心脏中的肥大和纤维化。药物,例如肾素抑制剂(例如Aliskiren),ACE抑制剂(例如Capteropril,Enalapril,Ramipril)和Angiotensin II受体阻滞剂(Arbs;例如,Irbesartan,Losartan,Losartan,Losartan,Valsartan,Valsartan,Valsartan)目标特定点在此途径中,以管理高度和相关条件。