分子动力学旨在模拟原子的物理运动,以便采样Boltzmann – Gibbs的概率度量和相关的轨迹,并使用Monte Carlo估计值来计算宏观特性[1,17]。执行这些数值模拟时的主要困难之一是标准化:该系统倾向于将其捕获在相空间的某些区域,通常在目标概率度量的局部最大值附近。在这种情况下,从一个亚稳态到另一个状态的过渡在复杂的系统中特别感兴趣,因为它们表征例如结晶或酶促反应。与分子时间尺度相比,这些反应长期尺度发生,因此对逼真的罕见事件的模拟在计算上很难。
摘要。人类活动识别在包括医疗保健和智能家居在内的各个领域都起着至关重要的作用。随着配备环境传感器的智能房屋的越来越多,人们对利用人工智能技术的兴趣越来越兴趣,以理解和认识到这些环境中的人类活动。但是,环境传感器收集的数据的规则和嘈杂性质提出了独特的挑战。为了应对这些挑战,我们建议使用接受传感器激活序列训练的预训练的嵌入式嵌入,通常是基于类似于GPT的架构的算法,以证明在智能家庭中日常生活的分类表现。此外,我们利用从一个环境中获得的知识来增强另一个环境的活动识别,研究转移学习的概念。结果表明,GPT变压器解码器的方法在多个数据集的精度和平衡精度方面优于其他算法。这些发现还突出了转移学习的潜力,从干净且大的数据集中,GPT跨解码器预先训练的嵌入在各种情况下显示出令人鼓舞的结果。
AurélienCouette,Camille Tron,LéonardGolbin,Benedicte Franck,Pauline Houssel-Debry等。使用微型缩影设备在他克莫司的曲线下的区域:朝着固体器官移植的精密医学?欧洲临床药理学杂志,2023,79(11),第1549-1556页。10.1007/S00228-023-03566-5。hal-04227953
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
AurélienMaillet,AgnèsBouju-Albert,Steven Roblin,PaulineVaissié,SébastienLeuillet等。dna提取方法和采样方法对细菌群落的采样方法和采样方法,受16s rdna Metabarcoding在冷salmokeped salmon and Processing salmon and Processing surfaces中监测的细菌群落。食品微生物学,2021,95,pp.1-10。10.1016/j.fm.2020.103705。hal-03492706
1。Introduction................................................................................................................................. 1-1 1.1 Test Objectives ................................................................................................................. 1-2 1.2 Test Protocol Summary..................................................................................................... 1-3 1.2.1 HWC MACT ............................................................................................................................................................................................................................................................................................................................................................................................................................. 1-3 1.2.2 RCRA周期性测试............................................................................................................................................. Testing During the CfPT and RCRA Periodic and PCB DRE Test....................................... 1-7 2.Waste Characterization............................................................................................................... 2-1 2.1 Feedstream Description.................................................................................................... 2-1 2.1.1 Hazardous Waste Feeds................................................................................................... 2-1 2.1.2 Auxiliary Fuel .............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................Detailed Engineering and Process Information............................................................................ 3-1 3.1 Kiln Solids Feed Systems.................................................................................................. 3-3 3.2 Kiln Pumpable Waste Feed System .................................................................................. 3-5 3.3 Secondary Combustion Chamber设计....................................................................................................................................................................................................................................................................................................... .......................................................................................................... 3-6 3.5.2 Ionizing Wet Scrubber....................................................................................................... 3-7 3.5.3 Wet Electrostatic Precipitator ............................................................................................ 3-7 3.5.4 Fans and Stack................................................................................................................. 3-7 3.6 Automatic Waste Feed Cutoff............................................................................................ 3-8 3.7 Process Monitoring and Operator Training ........................................................................ 3-9 4.Test Design and Protocol ............................................................................................................ 4-1 4.1 Test Objectives ................................................................................................................. 4-1 4.1.1 CfPT for the HWC MACT .................................................................................................. 4-1 4.1.2 RCRA Permit Periodic Testing........................................................................................... 4-1 4.1.3 PCB Trial Burn.................................................................................................................. 4-3 4.2 Test Protocol..................................................................................................................... 4-3 4.3 Waste Feed Characteristics and Selection ........................................................................................................................................................................................................................................................................................................................................................................................................... 4-12 4.7 System Operation to Achieve Steady-state Conditions .................................................... 4-12 4.8 AWFCO System During the Test ..................................................................................... 4-13 4.9 Determination of Hazardous Waste Residence Time ....................................................... 4-13 5.Sampling, Analysis, and Monitoring Procedures .......................................................................... 5-1 5.1 Sampling .......................................................................................................................... 5-1 5.1.1 Stack Gas Sampling Procedures ....................................................................................... 5-1 5.1.1.1 Sample Port Location .................................................................................................. 5-1 5.1.1.2 EPA Methods 2, 3A, and 4 (Flowrate, Gas Composition, and Moisture)........................ 5-1 5.1.1.3 SW-846 Method 0030 (Chlorinated VOCs)................................................................... 5-4 5.1.1.4 SW-846 Method 0023A (Dioxins/Furans) ..................................................................... 5-4 5.1.1.5 SW-846 Method 0023A (PCBs).................................................................................... 5-4
Busulfan(BU)是一种用于化学疗法方案的烷基化剂,以及诸如环磷酰胺(CY)和氟甲滨(Flu)的药物,用于造血干细胞移植(HSCT)。由于对儿童全身照射的长期影响的担忧,基于BU的调节方案已被广泛应用于小儿造血干细胞的调节。但是,BU具有狭窄的治疗窗口,其药代动力学特征显示出显着的个体间变异性,这在儿童中尤其明显(Marsit等,2020)。不足的药物暴露与移植衰竭或复发率更高有关,而过度暴露与毒性增加和与移植相关的死亡率增加有关(Bartelink等,2016)。值得注意的是,BU的效率和不良药物反应与其血液浓度的集中时间曲线(AUC)紧密相关,因此通常需要进行治疗药物监测(TDM)以实现个性化药物管理(Rasor等人,Rasor等,2019; Sweiss等,2019; Sweiss等,2020; Bogn。;Bognàret,2022; bogn- et al et a,202 and a,202 al an a e,202 al an a g an,202 and al a a n a e,202 al。有限的采样策略(LSS)是一种使用药代动力学模型来确定最佳采样
丙酮酸脱氢酶B(PDHB)是丙酮酸脱氢酶复合物的重要组成部分,与改变肿瘤代谢和促进恶性肿瘤有关。然而,PDHB对肝细胞癌(HCC)代谢重编程的特定影响及其在肿瘤进展中的作用仍有待阐明。在我们的研究中,我们发现了HCC内PDHB表达的明显升高,与延迟的肿瘤分期,肿瘤分级升高和预后结局降低相关。PDHB过表达驱动体外和体内肿瘤的生长和转移。从机械上讲,PDHB通过与SLC2A1,GPI和PKM2的启动子区域结合,介导了代谢重编程,从而促进了糖酵解相关的基因转录,从而有助于HCC索拉非尼替尼耐药。另外,同肌固定会是PDHB的靶向抑制剂,并对HCC发挥抗肿瘤作用。在小鼠异种移植模型中,同肌苷和索拉非尼的组合比单独的索拉非尼表现出明显更好的作用。总而言之,我们的研究证实了PDHB为一种能够预测HCC肿瘤进展的致癌耐药性相关基因。PDHB和等肌苷可能是肝癌靶向和联合疗法的潜在途径。