将他们的成就归功于系统的两个主要组成部分:区分和随机化。区分是指使用 SVM 来获取每个节点的分割知识,而随机化是指随机选择图像块,这些图像块用作学习每个节点的分割的特征形式。这种随机化过程可能会导致几个问题。首先,如果我们在 500X500 图像中选取大小为 50X50 的图像块,采样空间可能容纳数千个块,这使得随机选择的块不太可能容纳图像分类感兴趣的对象。此外,随机选择的样本更有可能相互重叠,从而产生冗余。因此,在本项目中,找出选择图像块的新方法。理论上,更具信息性的块选择应该在每个树节点产生更高质量的分割,这反过来应该会提高分类器的整体准确性。
摘要 - 准确的定位在高级自主驾驶系统中起重要作用。传统地图匹配的本地化方法通过具有传感器观测值的明确匹配的地图元素来解决姿势,通常对感知噪声敏感,因此需要昂贵的超级参数调整。在本文中,我们提出了一个端到端定位神经网络,该神经网络直接估计车辆从周围图像中构成,而没有与HD图明确匹配的感知结果。为确保效率和可预性能力,提出了一个基于BEV神经匹配的姿势求解器,估计在基于可区分的采样匹配模块中估计姿势。此外,通过将每个姿势DOF影响的特征表示形式解耦来大大降低采样空间。实验结果表明,所提出的网络能够执行分解器水平的定位,平均绝对误差为0.19m,0.13m和0.39◦在纵向,横向位置和偏航角度,同时表现出68.8%的推理记忆使用率降低了68.8%。
摘要 - 准确的定位在高级自主驾驶系统中起重要作用。传统地图匹配的本地化方法通过具有传感器观测值的明确匹配的地图元素来解决姿势,通常对感知噪声敏感,因此需要昂贵的超级参数调整。在本文中,我们提出了一个端到端定位神经网络,该神经网络直接估计车辆从周围图像中构成,而没有与HD图明确匹配的感知结果。为确保效率和可预性能力,提出了一个基于BEV神经匹配的姿势求解器,估计在基于可区分的采样匹配模块中估计姿势。此外,通过将每个姿势DOF影响的特征表示形式解耦来大大降低采样空间。实验结果表明,所提出的网络能够执行分解器水平的定位,平均绝对误差为0.19m,0.13m和0.39◦在纵向,横向位置和偏航角度,同时表现出68.8%的推理记忆使用率降低了68.8%。
抽象的傅立叶变换红外光谱(FTIR)是一种具有傅立叶变换的红外光谱,用于检测和分析光谱结果。此方法用于定性和定量分析波数范围14000 cm -1 –10 cm -1的有机和无机分子。基于这些波数,红外区域分为三个区域,即近红外,中红外和远红外。该方法中使用的工具是FTIR分光光度计,其工作原理基于能量与材料之间的相互作用。这种方法是快速,无损,简单的样品制备,易用性,使用少量溶剂,因此与其他HPLC和光谱方法相比,它在环保方面友好。但是,此方法中的采样空间相对较小,因此可以阻止红外线。使用的研究方法是来自2005 - 2023年期间出版年的20条研究文章的系统文献综述(SLR)。基于对阿莫西林,五氧环肽,环丙沙星,双氯氟乙烯酸钠,头孢曲松钠,ibuprofen,valsartan和cefadroxil化合物在药物中可以使用这种方法进行分析和有机化的构造的结果。根据印尼药典IV版,分析的所有化合物浓度符合内容要求,该版本不少于90%,不超过110%。