ADEQ 亚利桑那州环境质量部 AOGC 阿肯色州石油和天然气委员会 AOGCC 阿拉斯加州石油和天然气保护委员会 AOGCM 亚利桑那州石油和天然气委员会 bbls 桶 BLM 土地管理局 BOE 桶油当量 BOEM 海洋能源管理局 BOGC 蒙大拿州石油和天然气保护委员会 BSSE 安全和环境执法局 CalGEM 加利福尼亚州地质能源管理处 CBM 煤层气 CDOC 加利福尼亚州自然资源保护部 COGCC 科罗拉多州石油和天然气保护委员会 DENR 南达科他州环境和自然资源部 DII 美国内政部 DMME 弗吉尼亚州矿业、矿产和能源部 DOE 美国能源部 DOGM 犹他州自然资源部石油、天然气和采矿司 DOGRM 俄亥俄州石油和天然气资源管理司 EDMS 电子文档管理系统 EIA 能源信息管理局 EOR 提高采油率 ER 提高采收率 FDEP 佛罗里达州环境保护部 FS 森林服务局 GWPC 地下水保护委员会 HF 水力压裂 IDNR 印第安纳州自然资源部 IOGCC 爱达荷州石油和天然气保护委员会 KCC 堪萨斯州公司委员会 KDNR 肯塔基州自然资源部 LOC 路易斯安那州自然保护办公室 MDNR 密苏里州自然资源部 MGS 密苏里州地质调查局 Mmcf 百万标准立方英尺 MOGB 密西西比州石油和天然气委员会 NDIC 北达科他州工业委员会 NDOM 内华达州矿产部 NMOCD 新墨西哥州石油保护部 NOGCC 内布拉斯加州石油和天然气保护委员会的 NPDES 国家污染物排放消除系统 NYDEC 纽约州环境保护部 OCC 俄克拉荷马州公司委员会 ODNR 俄亥俄州自然资源部
海水(用于二次采油)与油藏水之间的不相容性会产生不溶性盐,从而形成无机水垢,沉积在输油介质中,造成堵塞,从而导致作业暂停和重大损失。因此,最好采用预防方法,重点采用涉及使用化学阻垢剂的化学方法。阻垢剂通常是聚合物基的,具有相对较低的摩尔质量,含有与溶液中的离子和/或微晶相互作用的阴离子基团。阻垢剂的应用可以采用两种方法进行:挤压处理或连续注入。挤压处理的成功主要取决于地层岩石中抑制剂的吸附。该方法的应用主要包括三个步骤:抑制剂的运移、抑制剂在储层岩石上的吸附以及在勘探过程中抑制剂的逐渐解吸。有研究使用流过多孔碳酸盐或砂岩介质的纳米流体,促进石油开采过程中抑制剂的控制释放。使用 Scopus 平台进行了文献计量搜索,仅包括科学文章并将搜索范围限制为:文章标题、摘要和关键词。根据这些数据,使用 VOSviewer® 应用程序生成了一个图表,该图表将搜索词中找到的单词关联起来,以便以图表的形式创建相关性,显示出现次数最多的术语并根据出现频率的平均年份对它们进行分类。很少有文章将纳米流体与石油工业联系起来,主要是关于无机水垢的抑制。文献调查确定了制备方法、纳米粒子类型、纳米流体基础、表征技术、纳米材料的制备和改性以及抑制剂溶解机理等主题。二氧化硅是与商业化学抑制剂一起使用的主要纳米颗粒。因此,针对油田的不同情况,纳米流体在挤压处理中抑制无机垢的研究找到了一个尚未开发的领域。因此,开发了一种新的方法方案,使用其他纳米粒子和其他在实验室中专门合成的聚合物结构来抑制无机沉积,探索最佳的协同作用可能性。二氧化硅、蒙脱石和凹凸棒石将被用作纳米材料。作为抑制剂,将使用商业产品和基于磷酸盐或膦酸盐的合成结构。