量子信息处理是一种复杂的现象,涉及量子计算和量子模拟,专注于解决各种难题,如模拟多体系统、大数分解和理解凝聚态系统,这些问题对于当今的经典计算机来说是不可能实现的。Wu 等人 (2021) 。超冷里德堡原子的控制和操纵为量子信息处理提供了一条有希望的途径 Saffman 等人 (2010) 。量子计算是通过量子门操作执行的。这种量子门操作的基本要求是开发可扩展和高保真度量子比特系统平台,该系统可以按照 DiVincenzo 标准高效地执行长算法操作 DiVincenzo (2000) 。具有高主量子数 n 的里德堡原子具有非凡的特性,例如按 n 4 缩放的长距离偶极-偶极相互作用和
1. 实验平台 1 2. 中间电路读出 2 3. 里德堡激光器 3 4. 电场控制 6 5. 静电场的消除 6 6. 静电场对 F¨orster 相互作用的影响 7 7. C 6 和 C 3 系数的提取 8 8. F¨orster 物理的里德堡态选择 8 8.1. 里德堡相互作用景观 8 8.2. 数值研究 9 9. SPAM 校正 10 9.1. 将状态准备误差转化为原子损失 10 9.2. 将测量基映射到“亮,亮” 11 9.3. 读出缺陷 11 9.4. 减轻阻塞测量的 SP 误差 12 9.5. 眼图的 SPAM 校正 12 9.6. QND 测量的 SPAM 校正 12 10. 辅助测量的 QND 性 13 11. 主方程模拟 13 误差源 14 11.1. 阻塞强度 14 11.2. 原子态寿命 14 11.3. 原子损失 14 11.4. 里德堡检测 14 11.5. 失相机制 15 11.6. 双量子比特门的误差预算 15 11.7. 地面-里德堡模拟 16 12. 物种内对的集体驱动 17 13. 具有独立 Rabi 频率的同时驱动 17 14. 量子态转移 17
量子纠缠是量子力学最奇特、最有趣的性质之一 [1],它在理解量子多体系统的物理[2-4]以及支持各种量子应用(如量子计算[5]、量子传感[6]和量子通信[7])方面发挥着重要作用。目前,人们对量子纠缠的产生、操纵和检测有着浓厚的兴趣,正在许多物理系统中进行研究,包括光子[8]、原子[9-12]、离子[13],以及超导电路[14]和缺陷钻石[15]等固态系统。然而,在大多数系统中,即使是操作小型量子计算机,纠缠技巧也需要进一步改进。任意量子比特对的纠缠,尤其是不在附近的量子比特对的纠缠,对于具有良好连通性的可扩展量子系统尤为重要。尽管已经通过共模运动在囚禁离子中 [16,17] 和通过腔总线在超导电路中 [18] 实现了纠缠,但在大多数其他系统中还未能实现,包括与本文特别相关的里德堡原子系统。广泛使用的里德堡原子系统纠缠方案 [9-12] 是基于里德堡阻塞效应 [19] ,该效应禁止在阻塞半径 rb = ðC6 =ΩÞ1 =6 (由拉比频率Ω 和范德华相互作用强度 C6 定义) 内的原子之间发生双激发到里德堡能态。因此,在该方案 (参考文献 [19] 的模型 B) 中,所有且只有 rb 内的原子对同时纠缠,使这些纠缠成为短程纠缠 (d < rb)。在本文中,我们通过实验证明了弱耦合状态下的原子对纠缠(d>rb),这与文献 [19] 中的模型 A 密切相关。借助该模型,即使在存在较近的原子而不必纠缠的情况下,也可以在里德堡阻塞距离之外实现长距离原子纠缠。在弱耦合状态下,两个原子的双激发里德堡态相隔一个
» 行动项目:公众听证会 - 地块 #884403400009 上数据处理业务的有条件使用许可证申请。摘要:审议 AUR Correctionville LLC(申请人)和业主 Ashley Acres Family Limited Partnership 的有条件使用许可证申请,他们已提交有条件使用许可证申请“以在变电站旁边放置需求响应负载资源并协同当地电力公司来支持电网弹性”,拟议用途是经营数据处理业务。拟议地点位于 T88N R44W(Wolf Creek 镇)地块 #884403400009 上,第 3 区,SE ¼ 的 SE ¼。该地产位于莫维尔东南约 6.2 英里处,Correctionville 西南约 7.7 英里处。该地产位于农业保护 (AP) 分区内,不在洪泛区内。业主/申请人:Ashley Acres Family Limited Partnership,3356 170th St.,Correctionville,IA 51016(业主)和 AUR Correctionville LLC,15988 230th St.,Grundy Center,IA 50638。
在 5 个地方分别建立社区卫生和护理人员团队,建立供应商伙伴关系作为“当地护理组织”(LCO),建立一些全区转型计划(例如紧急护理),并努力解决该区根深蒂固的健康不平等问题。它提到了通过拟议成立一个委托组织(OCO)来大幅改善市议会和 CCG 在该区的工作关系。OCO 将一些直线管理安排改为综合团队,也是市议会和 CCG 在委托方面的合作精神——联合任命、综合(集中和协调)预算,以及战略委托委员会的成立——市议会内阁和 CCG 董事会的决定被委托给临床和政治领导层进行共同和联合决策。
德勤品牌于 1917 年进入中国市场,在上海开设办事处。如今,德勤中国为中国本土、跨国和成长型企业客户提供全面的审计及鉴证、咨询、财务咨询、风险咨询和税务服务。德勤中国还为中国会计准则、税收制度和专业技能的发展做出了巨大贡献,并将继续做出贡献。如需了解德勤如何在中国发挥重大影响,请访问我们的社交媒体平台 www2.deloitte.com/cn/en/social-media。
萨德伯里市中心总体规划(总体规划)为 2012-2022 年及以后萨德伯里市中心的振兴提供了指导(见参考文献 1)。总体规划历时 20 个月制定,包括全面审查现有机会和制约因素、进行展望练习、进行详细规划和设计工作以及社区联络小组的积极参与。2012 年 4 月,理事会收到并批准了总体规划。2022 年 9 月,工作人员报告称,大部分“25 个第一年行动项目”和许多“10 年行动战略项目”已经完成(见参考文献 2)。工作人员还指出,正在进行多项计划,包括更新萨德伯里市中心停车战略和战略公共领域改进,这两项计划都与当时的东交界处项目(图书馆和美术馆)以及布雷迪街以南的地区(“南区”)有关。作为 2023 年预算流程的一部分,理事会批准拨款 250,000 美元用于更新总体规划。
里德堡原子是处于主量子数 n 的高度激发态的原子,人们对其的研究已有一个多世纪 [1,2]。在过去二十年里,里德堡原子物理学,特别是在超低温下 [3-8],由于其“夸张”的特性,为一系列激动人心的发现做出了贡献。高度激发的价电子与原子核之间的巨大距离以及随之而来的松散结合,导致了巨大的电极化率以及与周围原子的强长程偶极-偶极和范德华 (vdW) 相互作用。由于原子间的 vdW 相互作用取决于它们的极化率(对于几乎与氢相似的里德堡原子,其尺度为 n7),因此可以证明 vdW 力的尺度为 n11。因此,使用 n 在 50–100 范围内的里德堡原子可以将相互作用能量提高 17 到 20 个数量级 [9]。
哈佛大学的 Lukin 团队(Bernien 等人)利用里德堡原子阵列 4 实现了一个 51 量子比特的量子模拟器,避免了这些问题。利用里德堡原子的长寿命和强相互作用,以及巧妙的捕获技巧,他们能够创建一个模拟 Ising 型量子自旋模型的量子材料系统。他们观察到有序态的不同相,这些相破坏了各种离散对称性。此外,尽管这个系统不可积,但他们观察到似乎是非遍历的奇异多体动力学。这暗示了量子多体疤痕的观察。在他们的论文发表后,利兹大学的 Turner 等人发表了一篇理论论文,使用与 Lukin 团队所做的实验工作相同的系统,但使用 L = 32 作为系统大小。他们进一步将实验观察结果解释为由于光谱中的特殊本征态导致的弱遍历性破坏的结果。这类似于混沌非相互作用系统中的量子伤痕。5
组合难题的优化已被确定为量子计算硬件的早期潜在应用[1],人们在开发诸如量子退火算法(QAA)[2-5]或基于变分的方法(如量子近似优化算法)[6,7]等协议方面投入了大量精力。尽管做出了这些努力,但能够在这一领域展示出实际量子优势的硬件仍然难以捉摸[8-11]。基于单个光镊阵列的中性原子量子计算机[12-15]为量子计算提供了一个可扩展、多功能的平台,能够生成超过 1000 个量子比特的阵列[16-19],并执行高保真度单[20]和双量子比特[21-23]门操作,从而能够实现小规模量子算法[24]。这可以扩展到利用动态量子比特重构实现逻辑量子比特操作 [ 25 ]。除了数字操作外,中性原子阵列还可以访问可编程自旋模型