非线性过滤模型是一种设计安全流密码的古老且易于理解的方法。几十年来,大量的研究表明如何攻击基于此模型的流密码,并确定了用作过滤函数的布尔函数所需的安全属性,以抵御此类攻击。这导致了构造布尔函数的问题,这些函数既要提供足够的安全性,又要实现高效。不幸的是,在过去的二十年里,文献中没有出现解决这个问题的好方法。缺乏好的解决方案实际上导致非线性过滤模型或多或少变得过时。这对密码设计工具包来说是一个巨大的损失,因为非线性过滤模型的巨大优势在于,除了它的简单性和为面向硬件的流密码提供低成本解决方案的能力之外,还在于积累了有关抽头位置和过滤函数的安全要求的知识,当满足所有标准时,这让人对其安全性充满信心。在本文中,我们构造了奇数个变量(n≥5)的平衡函数,这些函数具有以下可证明的性质:线性偏差等于2−⌊n/2⌋−1,代数次数等于2⌊log2⌊n/2⌋⌋,代数免疫度至少为⌈(n−1)/4⌉,快速代数免疫度至少为1+⌈(n−1)/4⌉,并且这些函数可以使用O(n)NAND门实现。这些函数是通过对著名的Maiorana-McFarland弯曲函数类进行简单修改而获得的。由于实现效率高,对于任何目标安全级别,我们都可以构造高效的可实现函数,以提供对快速代数和快速相关攻击所需的抵抗级别。先前已知的可有效实现的函数具有过大的线性偏差,即使变量数量很大,它们也不合适。通过适当选择 n 和线性反馈移位寄存器的长度 L,我们表明有可能获得可证明 κ 位安全的流密码示例,这些密码对于各种 κ 值都可以抵御众所周知的攻击。我们为 κ = 80、128、160、192、224 和 256 提供了具体建议,使用长度为 163、257、331、389、449、521 的 LFSR 和针对 75、119、143、175、203 和 231 个变量的过滤函数。对于 80 位、128 位和 256 位安全级别,相应流密码的电路分别需要大约 1743.5、2771.5 和 5607.5 个 NAND 门。对于 80 位和 128 位安全级别,门数估计值与著名密码 Trivium 和 Grain-128a 相当,而对于 256 位安全级别,我们不知道任何其他流密码设计具有如此低的门数。关键词:布尔函数、流密码、非线性、代数免疫、高效实现。
非线性过滤模型是一种设计安全流密码的古老且易于理解的方法。几十年来,大量的研究表明如何攻击基于此模型的流密码,并确定了用作过滤函数的布尔函数所需的安全属性,以抵御此类攻击。这导致了构造布尔函数的问题,这些函数既要提供足够的安全性,又要实现高效。不幸的是,在过去的二十年里,文献中没有出现解决这个问题的好方法。缺乏好的解决方案实际上导致非线性过滤模型或多或少变得过时。这对密码设计工具包来说是一个巨大的损失,因为非线性过滤模型的巨大优势在于,除了它的简单性和为面向硬件的流密码提供低成本解决方案的能力之外,还在于积累了有关抽头位置和过滤函数的安全要求的知识,当满足所有标准时,这让人对其安全性充满信心。在本文中,我们构造了奇数个变量(n≥5)的平衡函数,这些函数具有以下可证明的性质:线性偏差等于2−⌊n/2⌋−1,代数次数等于2⌊log2⌊n/2⌋⌋,代数免疫度至少为⌈(n−1)/4⌉,快速代数免疫度至少为1+⌈(n−1)/4⌉,并且这些函数可以使用O(n)NAND门实现。这些函数是通过对著名的Maiorana-McFarland弯曲函数类进行简单修改而获得的。由于实现效率高,对于任何目标安全级别,我们都可以构造高效的可实现函数,以提供对快速代数和快速相关攻击所需的抵抗级别。先前已知的可有效实现的函数具有过大的线性偏差,即使变量数量很大,它们也不合适。通过适当选择 n 和线性反馈移位寄存器的长度 L,我们表明有可能获得可证明 κ 位安全的流密码示例,这些密码对于各种 κ 值都可以抵御众所周知的攻击。我们为 κ = 80、128、160、192、224 和 256 提供了具体建议,使用长度为 163、257、331、389、449、521 的 LFSR 和针对 75、119、143、175、203 和 231 个变量的过滤函数。对于 80 位、128 位和 256 位安全级别,相应流密码的电路分别需要大约 1743.5、2771.5 和 5607.5 个 NAND 门。对于 80 位和 128 位安全级别,门数估计值与著名密码 Trivium 和 Grain-128a 相当,而对于 256 位安全级别,我们不知道任何其他流密码设计具有如此低的门数。关键词:布尔函数、流密码、非线性、代数免疫、高效实现。
摘要 - 尽管数字支付方法的增加,但持续使用实物货币,对存储钞票和硬币的保险库构成了安全挑战。传统的金库安全措施,包括物理障碍,时间锁,双控制系统和监视,容易受到复杂的攻击和内部威胁的影响。本文通过合并智能物联网(IoT)设备和机器学习算法来监视保险库货架上的钞票的重量,从而提出了一种新颖的方法来增强跳马安全性。通过跟踪和分析重量变化,该系统旨在检测差异和潜在盗窃。该系统采用各种机器学习模型,包括线性回归,套索回归,K-Nearest邻居(KNN),支持向量机(SVM)和随机森林,以预测基于重量和面额的钞票数量。评估表明,线性回归和LASSO回归达到了最高的精度,使其成为该应用的最有效模型。挑战,例如有限的数据,计算资源限制以及对更精致功能的需求,以及潜在的改进,例如数据增强和增强的解释性。这种方法通过整合现代技术来保护盗窃和未经授权的访问,从而在保险库安全方面取得了重大进步。
大多数日常活动需要灵巧地使用手和手指。残疾人的手部假肢可以通过连接到上肢的表面电极非侵入式获取的表面肌电图 (sEMG) 信号来控制。在对从 10 位截肢者获取的 12 个电极 sEMG 信号进行预处理后,计算了时域和频域中的不同特征。考虑到 sEMG 是一种复杂、随机、非平稳和非线性信号,还通过多重分形去趋势波动分析 (MFDFA) 的方法提取了复杂的非线性特征。使用不同的分类方法(包括支持向量机 (SVM)、线性判别分析 (LDA) 和多层感知器 (MLP))来比较它们在八种不同手指运动分类中的表现。观察发现,SVM 在手指运动分类方面的表现优于其他两个分类器。新特征与传统特征融合后,分类准确率、精确率、召回率(灵敏度)分别为98.70%、98.74%、98.67%。结果表明,加入MFDFA提取的新特征与其他传统特征,可以有效提高数据采集效果。
结构和建筑材料的现代进步促使研究人员专注于这些创新的适应。尤其是,由于陶瓷瓷砖在各种室内和室外设置中的美学吸引力以及安装简单性,引起了人们的关注。陶瓷瓷砖的利用不仅旨在提供结构完整性,而且类似地旨在增强其视觉属性,从而具有重要的价值。在将这些瓷砖固定在表面上的角度上,常规方法需要使用沙子泥浆灌浆。尽管如此,这种方法提出了某些局限性,例如保留水分不足,刚性表面,延长的干燥期,缺乏柔韧性和较厚的糊剂施用以及其他问题。可以通过与其他水泥元素结合结合掺入可重分散的聚合物粉(RPP)来有效解决这些障碍。通过它们的合并应用,聚合物与水泥成分协同增强物理和机械特征,从而提高粘附强度,最大程度地减少收缩并减少吸水。本评论文章的主要目标是强调陶瓷瓷砖粘合剂的重要性,同时提供了胶合瓷砖粘合剂(CTA)及其所有组件的彻底解释。我们将重点放在市售的RPP及其纳入CTA配方上。
© 作者 2024。开放存取 本文根据知识共享署名 4.0 国际许可证进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可证中,除非在资料的信用额度中另有说明。 如果资料未包含在文章的知识共享许可证中,并且您的预期用途不被法定规定允许或超出了允许的用途,您将需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域贡献豁免(http://creativecommons.org/publicdo-main/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
聚氯乙烯仍然是该行业中最普遍的聚合物之一,但由于其化石起源,其实质性的环境影响促使探索创新的解决方案。复合材料,尤其是生物复合材料,成为减轻PVC生态足迹的有希望的替代品,同时增强其特征。这项研究通过介绍包含90%PVC和10%生物填充物的生物复合材料的发展来解决这一问题,该生物源是牛角,以其较高的角蛋白含量而闻名。主要目标是创建一种创新,环保和可持续的材料。要严格评估该生物复合材料的性质和热稳定性,对Virgin PVC进行了比较热重分析。结果揭示了与Virgin PVC相比,尤其是280℃以上的生物复合材料的最高热稳定性。这种增强归因于生物填充物中角蛋白的大量存在,占角生物量的近90%。值得注意的是,在温度超过280℃时,生物复合材料中观察到的质量损失低于原始PVC。这项研究强调了生物复合材料的潜力,特别是那些含有牛角源填充剂的生物复合材料,是减轻PVC生态足迹的有希望的替代方案,同时同时改善了其热机械特性。这项研究中开发的创新材料对各个行业的可持续应用有望与对环境意识替代方案的需求不断增长。
图3。用PHA,CONA或LPS刺激后,基因(RNA)与蛋白质表达的相关性与蛋白质表达的相关性。在刺激后12、24和48小时,ENA(CXCL5),GRO-ALPHA(CXCL1),MCP-3(CCL7)和BLC(CXCL13)的相对RNA和蛋白质表达。将Quantigene plex人免疫反应面板80-plex数据(线图)标准化为管家PPIB。使用Procartaplex人免疫反应面板80-plex获取蛋白质数据。数据(条形图)显示为log2折叠在未刺激的控制样本上的变化。
量子计量有望成为量子技术的一个突出用例。然而,噪声很容易降低这些量子探测状态的质量,并抵消它们在无噪声环境中提供的量子优势。虽然量子纠错 (QEC) 可以帮助解决噪声问题,但容错方法对于近期使用来说资源过于密集。因此,需要一种 (近期) 稳健的计量策略,该策略可轻松适应未来基于 QEC 的量子计量。在这里,我们通过研究由最小距离 d ≥ t + 1 的 [ n, k, d ] 二进制块码构成的量子探测状态的性能,提出了这样一种架构。此类状态可以解释为 CSS 码的逻辑 | + + · · · + ⟩ 状态,其逻辑 X 组由上述二进制码定义。当量子探测状态的常数 t 个量子比特被擦除时,利用量子 Fisher 信息 (QFI),我们证明由此产生的噪声探测可以给出磁场估计值,其精度与相应 2 t 缩短代码的权重分布的方差成反比。此外,我们证明,如果 C 是任何与长度为 n 的线性内部重复代码连接的代码,那么量子计量中就可能存在量子优势。这意味着,给定任何恒定长度的 CSS 代码,与长度为 n 的线性重复代码的连接对于具有恒定擦除误差数量的量子计量是渐近最优的。除了基本的 QFI 结果之外,我们还明确构建了一个可观测量,当在这种受噪声代码启发的探测状态上测量时,它可以对磁场强度产生一定的精度,并且在磁场强度消失的极限下也表现出量子优势。我们强调,尽管使用了编码理论方法,但我们的结果并不涉及综合征测量或错误校正。我们用 Reed-Muller 码构建的探测状态示例来补充我们的结果。
近年来,半导体公司对小芯片封装表现出浓厚的兴趣,以适应人工智能和高性能计算系统等高性能应用。片上系统 (SoC) 技术将各种技术和功能块集成到单片芯片上,传统上用于创建高性能应用系统。然而,随着 SoC 设计变得越来越复杂,开发时间更长,制造成本更高。小芯片可以被认为是片上系统 (SoC) 的低成本、更快上市的替代方案。公司可以利用小芯片方法来创建系统,即采用各种技术的芯片,并利用先进的封装平台(例如基于硅或 RDL 的中介层 [1-3])将它们集成到系统中。