摘要 本文包含 2019 年提交给 ESA 航行 2050 进程的白皮书的摘要,该白皮书随后发表在 EPJ Quantum Technol. 7、6 2020 上。我们在本白皮书中提出了一个太空实验的概念,使用冷原子来寻找超轻暗物质,并探测 LISA 和地面 LIGO/Virgo/KAGRA/INDIGO 实验最敏感范围之间的频率范围内的引力波。这个称为暗物质和引力探索原子实验 (AEDGE) 的跨学科实验还将补充其他计划中的暗物质搜索,并利用与其他引力波探测器的协同作用。我们举例说明了 AEDGE 对超轻暗物质的灵敏度范围扩大,以及其引力波测量如何探索超大质量黑洞的组装、早期宇宙中的一级相变和宇宙弦。AEDGE 将基于目前正在开发的使用冷原子进行地面实验的技术,并将受益于 LISA 和微重力冷原子实验等获得的太空经验。
现代量子科学的基石——相干性、相关性和纠缠——可以为引力的本质提供独特的探索。量子系统控制的不断发展已经使超精确测量引力甚至更奇特的现象(如引力波)成为可能。虽然纠缠的量子现象被广泛认为是提高此类测量精度的资源,但它也可以以全新的方式为引力提供探索。例如,引力的量子力学公式可能对量子物质中纠缠的产生和行为具有至关重要的影响,而纠缠的量子态使我们能够构建等效原理等经典概念的真正量子测试。
1 DPHY,ONERA,巴黎萨克雷大学,Chemin de la Hunière-BP80100,F-91123 Palaiseau,法国; bruno.christophe@onera.fr (BC); vincent.lebat@onera.fr (VL); emilie.hardy@onera.fr(EH); phuong-anh.huynh@onera.fr (P.-AH); noemie.marquet@onera.fr(新墨西哥州); cedric.blanchard@onera.fr (CB); yannick.bidel@onera.fr (YB); alexandre.bresson@onera.fr (AB)2 慕尼黑工业大学天文学和物理大地测量学老师,Arcisstraße 21,80333 慕尼黑,德国; petro.abrykosov@tum.de (PA); thomas.gruber@tum.de (TG); roland.pail@tum.de (RP)3 欧洲空间局,Keplerlaan 1,PO Box 299,2200 AG Noordwijk,荷兰; ilias.daras@esa.int 4 欧洲空间局 ESA 的 RHEA,Keplerlaan 1, PO Box 299, 2200 AG Noordwijk,荷兰; olivier.carraz@esa.int * 通讯地址:nassim.zahzam@onera.fr
摘要:本文研究了带电的圆柱塌陷的动力学,并在F(r,tαβTαβ)理论中使用了耗散物质的构造。这种新配制的理论解析了原始奇异性,并在早期宇宙中提供了可行的宇宙学结果。此外,它的含义发生在高曲率方向上,在高曲率方向上,能够确定能量摩托车平方与一般相对论的偏差。我们分别通过Misner -Sharp和M. u ler – Il -ler -ol -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler的动力学方程。然后,我们将这些方程式磨损以检查有效的流体参数和校正项对崩溃现象的影响。也开发了修改的术语,物质参数和Weyl张量之间的连接。为了获得保融性,我们选择了该理论的特定模型,并假设具有零电荷的尘埃物质会导致共形的平流和均匀的能量密度。我们发现经过修改的术语,耗散物质和电磁场减少了崩溃的现象。
目的重力项目是一项全国性公众合作组织,旨在开发基于共识的数据标准,以改善利益相关者如何使用和共享有关健康社会决定因素(SDOH)的信息,使一群社会护理提供者参与社会护理共同设计的工作,以改善重力项目内容和方法。In partnership with Civitas Networks for Health – a national collaborative of membership organizations using health data utility, health information exchange, health data, and multi- stakeholder, cross-sector approaches to improve health – this phase of the Co-Design aimed to solicit, synthesize, and document social care provider feedback on Gravity data standards, subtleties between different social care provider subtypes and Gravity relevant roles, requirements, and opportunities.
我们研究抗 - de Seitter(ADS)黑色壳(也称为Ads Black Bubbles)的电磁和重力特性 - 一类量子重力动机的黑洞模拟物,在经典限制中被描述为物质的超级壳壳。我们发现它们的电磁特性与黑洞非常相似。然后,我们讨论这些物体与黑洞可区分的程度,包括黑色壳模型内的内在兴趣,以及作为外来紧凑型物体(ECOS)其他类似努力的指南。我们研究光子环和透镜带特性,与非常大的基线干涉法(VLBI)观测值有关,以及引力波可观测值 - Eikonal极限中的准模式和非静态潮汐壳的静态潮汐壳(与正在进行和即将来临的Gravitation Gravitation Waver toughational Wave观测)相关。
1 DPHY,ONERA,巴黎萨克雷大学,Chemin de la Hunière-BP80100,F-91123 Palaiseau,法国; bruno.christophe@onera.fr (BC); vincent.lebat@onera.fr (VL); emilie.hardy@onera.fr(EH); phuong-anh.huynh@onera.fr (P.-AH); noemie.marquet@onera.fr(新墨西哥州); cedric.blanchard@onera.fr (CB); yannick.bidel@onera.fr (YB); alexandre.bresson@onera.fr (AB)2 慕尼黑工业大学天文学和物理大地测量学老师,Arcisstraße 21,80333 慕尼黑,德国; petro.abrykosov@tum.de (PA); thomas.gruber@tum.de (TG); roland.pail@tum.de (RP)3 欧洲空间局,Keplerlaan 1,PO Box 299,2200 AG Noordwijk,荷兰; ilias.daras@esa.int 4 欧洲空间局 ESA 的 RHEA,Keplerlaan 1, PO Box 299, 2200 AG Noordwijk,荷兰; olivier.carraz@esa.int * 通讯地址:nassim.zahzam@onera.fr
身体健全的人能够在他们的一生中进行各种复杂而充满挑战的运动活动。艺术,运动或与劳动有关的,所有动作都不可避免地受到一个恒定环境参数的影响:重力。的确,从他们的第一天开始,人类经历了控制自己的身体的必要性,同时沉浸在重力领域并与不同惯性特性的物体互动。由于适应过程,成年人随后能够在日常生活中进行基本活动,以保持个人福祉和独立性。在生理上,在整个人类发展中,大脑的特征是一种称为神经塑性的过程,其中神经连接适应环境变化。这允许学习现象,涉及获得新的运动计划和执行能力1。大脑会产生身体的认知表示及其与外部环境的相互作用。这种称为内部模型的框架允许预测身体对动作,运动和感觉输入23的反应23。尤其是内部运动学模型转换了任务空间的信息(即与关节空间的上线手轨迹,同时,内部动力学模型计算执行给定活性2,4所需的关节扭矩。 尽管如此,电动机计划过程对运动5,6的执行产生了运动和动态约束。手轨迹,同时,内部动力学模型计算执行给定活性2,4所需的关节扭矩。尽管如此,电动机计划过程对运动5,6的执行产生了运动和动态约束。中枢神经系统(CNS)考虑了在特定任务执行7之前的重力效应,这要归功于几个负责“助攻” 3、8、9的体感通道的激活。这对于垂直任务尤其明显,在垂直任务中,路径执行在向上和向下移动之间有所不同。10