SYC1004 NCTC11168 Δ recA :: cat 本研究 SYC1006 NCTC11168 cj1426 :: astA Δ flaA :: kan 本研究 SYC1007 NCTC11168 cj1426 ON :: astA Δ flaA :: cat 本研究 SYC1008 NCTC11168 cj1426 OFF :: astA Δ flaA :: kan 本研究 SYC1P000K NCTC11168 Δ flaA :: kan cj1139 OFF cj1144 OFF cj1420 OFF cj1421 OFF cj1422 OFF cj1426 OFF cj1429 OFF cj1437 OFF
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
气候变化严重影响了全球森林生态系统,由于温度升高,降水模式转移和极端天气事件,压力木本植物。这些压力威胁着生物多样性,并破坏了森林在碳固换,木材生产和生态系统稳定性中所发挥的重要作用。鉴于树木的少年阶段,传统的森林管理策略,例如选择性育种,无法跟上气候变化的迅速速度。 多路复用基因组编辑,特别是通过CRISPR技术,提供了一种有希望的解决方案,可以加速木本植物中气候富度特征的发展。 通过同时靶向多个基因,多重CRISPR可以有效地修改控制胁迫耐受性,抗病性和其他关键弹性因素的多基因性状。 这项迷你审查研究了多重CRISPR技术在森林管理,育种和农业生态实践中的潜力,展示了它们如何改善树木的弹性并支持可持续林业,以应对气候变化的日益增长的挑战。鉴于树木的少年阶段,传统的森林管理策略,例如选择性育种,无法跟上气候变化的迅速速度。多路复用基因组编辑,特别是通过CRISPR技术,提供了一种有希望的解决方案,可以加速木本植物中气候富度特征的发展。通过同时靶向多个基因,多重CRISPR可以有效地修改控制胁迫耐受性,抗病性和其他关键弹性因素的多基因性状。这项迷你审查研究了多重CRISPR技术在森林管理,育种和农业生态实践中的潜力,展示了它们如何改善树木的弹性并支持可持续林业,以应对气候变化的日益增长的挑战。
图 1. 现有 Cas12a CRISPRa 技术的评估。A) 采用两种不同的 Cas12a 核酸酶失活突变的 CRISPRa 构建体的比较。通过转导五天后表达 CD4 的细胞百分比来测量激活程度。B) 针对采用直接与 dCas12a (D908A) 连接的 TAD 组合的 12 种 CRISPRa 构建体变体,以基线表达为标准对 CD4 平均荧光强度 (MFI)。C) 示意图描绘了基于流式细胞术的平铺筛选的概览,该筛选用于识别其他活性 Cas12a CRISPRa 指南。D) 根据指南靶位点相对于 CD4、CD26、CD97 和 CD274 的转录起始位点 (TSS) 的位置绘制了每个指南在技术重复中的绝对最小 LFC 的 Z 分数。
Inari 是一家 SEEDesign™ 公司,利用新育种技术突破可能性的界限,设计出对自然有益的种子,以实现更可持续的粮食系统。人工智能预测设计和开创性的多重基因编辑工具箱相结合,使 Inari 能够充分发挥种子的潜力,并推进关键解决方案,这些解决方案具有广泛的应用,可以用更少的资源种植更多的粮食。这些产品将成倍地提高产量,同时减少对土地、水和氮使用的环境影响——在为整个价值链创造价值的同时,对自然产生积极影响,从农民开始。
TALE 碱基编辑器是最近添加到基因组编辑工具箱中的。这些分子工具是转录激活因子样效应结构域 (TALE)、分裂 DddA 脱氨酶半体和尿嘧啶糖基化酶抑制剂 (UGI) 的融合,它们具有直接编辑双链 DNA 的独特能力,将胞嘧啶 (C) 转化为胸腺嘧啶 (T)。为了剖析 TALE-BE 的编辑规则,我们将数十个靶向核基因组位点的 TALE-BE 的筛选与基于将 TALE-BE 靶位点集合精确敲入细胞基因组的中/高通量策略相结合。后一种方法使我们能够深入了解 cellulo 中的编辑规则,同时排除不同基因组位点之间的表观遗传和微环境差异等混杂因素。利用获得的知识,我们设计了靶向 CD52 的 TALE-BE,并实现了非常高的基因敲除频率(高达 80% 的表型 CD52 敲除)。我们进一步证明 TALE-BE 仅产生微不足道的插入/缺失和副产物。最后,我们将两种分子工具(TALE-BE 和 TALEN)结合起来进行多重基因组工程,产生高水平的双基因敲除(~75%),而不会在两个靶位点之间产生易位。
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 8 月 23 日发布。;https://doi.org/10.1101/2022.08.22.504755 doi:bioRxiv 预印本
1 日本筑波大学医学院解剖学与胚胎学系,2 日本筑波大学综合与全球专业学院人类生物学博士课程,3 日本筑波大学综合人类科学研究生院生物医学科学博士课程,4 日本筑波大学医学院跨境医学研究中心实验动物资源中心,5 日本筑波理化学研究所生物资源研究中心实验动物部,6 日本筑波大学计算机科学系,7 日本筑波大学医学院生物信息学实验室,8 日本筑波大学综合人类科学研究生院医学科学博士课程,9 日本筑波大学医学院基因组生物学系
多重基因组编辑 (MGE) 技术是最近开发的多功能生物工程工具,用于高精度修改基因组中两个或多个特定 DNA 基因座。这些基因组编辑工具大大提高了在多个核苷酸水平上向目标基因组引入所需变化的可行性。特别是,基于成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 (Cas) [CRISPR/Cas] 系统的 MGE 工具允许同时在一个或多个基因的多个基因座上精确地产生直接突变。MGE 正在增强植物分子生物学领域,并为彻底改变现代作物育种方法提供了能力,因为使用之前的基因组编辑工具(例如锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALEN))几乎不可能在单碱基对水平上如此精确地编辑基因组。最近,研究人员不仅开始使用 MGE 工具来推进某些植物科学领域的基因组编辑应用,而且还试图解释和回答与植物生物学相关的基本问题。在这篇评论中,我们讨论了目前在开发和利用 MGE 工具方面取得的进展,重点介绍了 CRISPR/Cas9 发现后植物生物学的改进。此外,还介绍了涉及 CRISPR/Cas 应用以编辑多个基因座或基因的最新进展。最后,对 MGE 技术在推进作物改良计划方面的优势和重要性进行了深入分析。
