具有 KMT2A 重排 (KMT2Ar) 的急性髓系白血病 (AML) 位于染色体 11q23 上,通常称为 KMT2A 重排 AML (KMT2Ar-AML)。这种变异具有高度侵袭性,其特点是疾病进展迅速且预后不良。对表观遗传变化(尤其是乳酸化)的了解日益增多,为研究和管理这种亚型开辟了新途径。乳酸化在癌症、炎症和组织再生中起着重要作用,但其潜在机制尚未完全了解。这项研究检查了乳酸化对 KMT2Ar-AML 内基因表达的影响,最初确定了十二个值得注意的乳酸化依赖性差异表达基因 (DEG)。利用先进的机器学习技术,确定了六个关键的乳酸化相关基因(PFN1、S100A6、CBR1、LDHB、LGALS1、PRDX1),这些基因对于预后评估至关重要,并与相关疾病途径相关。该研究还建议使用 PI3K 抑制剂和 Pevonedistat 作为调节免疫细胞浸润的可能治疗选择。我们的研究结果证实了乳酸化在 KMT2Ar-AML 中的关键作用,并确定了六个可作为诊断和治疗生物标记的关键基因。除了强调需要在临床环境中进一步验证外,这些发现还有助于我们了解 KMT2Ar-AML 的分子机制。
战略思想家——来自桑迪亚各地的团队在过去三年中共同制定并实施了由七项优先事项组成的战略方向,以指导实验室未来 20 年的发展。核心团队成员从左至右依次为 Amber Harwell、Tracy Wilbur、Karla Weaver、Kathryn Hanselmann、Scott Holswade、Donna Robertson、John Foley、Rita Gonzales、Elizabeth Roll、Anita Romero O'Brian、Caren Wenner 和 Danielle Rodriguez。图中未出现的核心成员包括 Bill Miller、Chrisma Jackson、Amy Shrouf、Gil Herrera 和 Pam McKeever。照片由 Lonnie Anderson 拍摄
在11月和12月的Bul Letin问题中,Hong Dao在两个部分的系列中讨论了出售和购买法律实践的组成部分。在“过渡遗产:出售您的法律实践”中突出显示是有助于其价值的实践中的因素。一个经常出现的外观和关键因素是个人的善意。个人善意是指所有者所附的价值,例如他们的专业知识,声誉和关系。不像有形的资产,个人善意向新所有者的可转让性很难。律师事务所通常是在赚取的结构上购买的,卖方在卖出的客户群销售后获得了一部分收入。买方在销售期间有效地转移其客户群的能力保留了实践的价值并增加了卖方的支出。供卖方在销售期间利用其个人善意,需要过渡
ACTN3 R577X多态性。 J锻炼营养生物化学。 2015; 19(3):157-64。 3 Kikuchi N,Yoshida S,Min SK,Lee K,Sakamaki-Sunaga M,Okamoto T等。 ACTN3 R577X基因型与日本人群中的肌肉功能有关。 Appl Physiol Nutr Metab。 2015; 40(4):316-22。 4 Gatfield D,Izaurralde E.胡说八道介导的信使RNA衰变是由果蝇的核核酸裂解引发的。 自然。 2004; 429(6991):575-8。 5 Tuladhar R,Yeu Y,Tyler Piazza J,Tan Z,Rene Clemenceau J,Wu X等。 基于CRISPR-CAS9的诱变经常引起目标mRNA的正调。 nat Commun。 2019; 10(1):4056。ACTN3 R577X多态性。J锻炼营养生物化学。2015; 19(3):157-64。3 Kikuchi N,Yoshida S,Min SK,Lee K,Sakamaki-Sunaga M,Okamoto T等。 ACTN3 R577X基因型与日本人群中的肌肉功能有关。 Appl Physiol Nutr Metab。 2015; 40(4):316-22。 4 Gatfield D,Izaurralde E.胡说八道介导的信使RNA衰变是由果蝇的核核酸裂解引发的。 自然。 2004; 429(6991):575-8。 5 Tuladhar R,Yeu Y,Tyler Piazza J,Tan Z,Rene Clemenceau J,Wu X等。 基于CRISPR-CAS9的诱变经常引起目标mRNA的正调。 nat Commun。 2019; 10(1):4056。3 Kikuchi N,Yoshida S,Min SK,Lee K,Sakamaki-Sunaga M,Okamoto T等。ACTN3 R577X基因型与日本人群中的肌肉功能有关。Appl Physiol Nutr Metab。2015; 40(4):316-22。4 Gatfield D,Izaurralde E.胡说八道介导的信使RNA衰变是由果蝇的核核酸裂解引发的。自然。2004; 429(6991):575-8。5 Tuladhar R,Yeu Y,Tyler Piazza J,Tan Z,Rene Clemenceau J,Wu X等。基于CRISPR-CAS9的诱变经常引起目标mRNA的正调。nat Commun。2019; 10(1):4056。
202. 3) Wang, JY, Tuck, OT, Skopintsev, P., Soczek, KM, Li, G., Al-Shayeb, B., Zhou, J., & Doudna, JA (2023) 通过 CRISPR 修剪器整合酶进行基因组扩展。Nature,618,855 ‒ 861。4) Wang, JY, Pausch, P., & Doudna, JA (2022) CRISPR-Cas 免疫和基因组编辑酶的结构生物学。Nat. Rev. Microbiol. , 20 , 641 ‒ 656。5) Anzalone, AV、Randolph, PB、Davis, JR、Sousa, AA、Ko-blan, LW、Levy, JM、Chen, PJ、Wilson, C.、Newby, GA、Raguram, A. 等人 (2019) 无需双链断裂或供体 DNA 的搜索和替换基因组编辑。Nature,576,149 ‒ 157。6) Mehta, J. (2021) CRISPR-Cas9 基因编辑用于治疗镰状细胞病和β地中海贫血。N. Engl. J. Med.,384,e91。 7) Kapitonov, VV, Makarova, KS, & Koonin, EV (2015) ISC,一组编码 Cas9 同源物的新型细菌和古细菌 DNA 转座子。J. Bacteriol. ,198,797 ‒ 807。8) Altae-Tran, H., Kannan, S., Demircioglu, FE, Oshiro, R., Nety, SP, McKay, LJ, Dlakić, M., Inskeep, WP, Makarova, KS, Macrae, RK, et al. (2021) 广泛分布的 IS200/IS605 转座子家族编码多种可编程的 RNA 引导的核酸内切酶。 Science , 374 , 57 œ 65。9) Weinberg, Z., Perreault, J., Meyer, MM, & Breaker, RR (2009) 细菌宏基因组分析揭示的特殊结构化非编码 RNA。Nature , 462 , 656 œ 659。10) Hirano, S., Kappel, K., Altae-Tran, H., Faure, G., Wilkinson, ME, Kannan, S., Demircioglu, FE, Yan, R., Shiozaki, M., Yu, Z., et al. (2022) OMEGA 切口酶 IsrB 与 ω RNA 和靶 DNA 复合的结构。 Nature , 610 , 575 œ 581。11) Biou, V., Shu, F., 和 Ramakrishnan, V. (1995) X 射线晶体学显示翻译起始因子 IF3 由两个通过 α 螺旋连接的紧凑的 α/β 结构域组成。EMBO J. , 14 , 4056 œ 4064。12) Schuler, G., Hu, C., 和 Ke, A. (2022) IscB-ω RNA 进行 RNA 引导的 DNA 切割的结构基础以及与 Cas9 的机制比较。 Science,376,1476 ‒ 1481。13) Bravo, JPK、Liu, MS、Hibshman, GN、Dangerfield, TL、Jung, K.、McCool, RS、Johnson, KA 和 Taylor, DW (2022) CRISPR-Cas9 错配监测的结构基础。Nature,603,343 ‒ 347。14) Aliaga Goltsman, DS、Alexander, LM、Lin, JL、Fregoso Ocampo, R.、Freeman, B.、Lamothe, RC、Perez Rivas, A.、Temoche-Diaz, MM、Chadha, S.、Nordenfelt, N. 等人 (2022) 从未培养的微生物中发现用于基因组编辑的紧凑型 Cas9d 和 HEARO 酶。Nat. Commun. ,13,7602。