在 GaN HEMT 的可靠性研究中,阈值电压 (V th ) 的波动对监测电漂移提出了挑战。虽然欧姆 p-GaN 等技术可以减轻 V th 波动,但可恢复电荷捕获的问题仍然存在。因此,在进行可靠性研究时采用新颖的特性分析方法至关重要,这样才能测量内在变化而不是即使在未退化的晶体管中也存在的电荷捕获效应。本文阐述的一种方法可以可靠且可重复地测量欧姆 p-GaN 栅极 HEMT GaN 的 V th 。在阈值电压测量之前立即引入专用的栅极偏置曲线以使其稳定。这个预处理阶段需要负偏置电压,然后再施加适当高的电压才能有效。所介绍的新协议也被证明适用于其他 HEMT GaN 结构。
摘要 - 先前的研究表明,只要SC期间消散的能量略低于给定阈值(所谓的临界能量),SI设备可以维持大量的短路(SC)事件。在本文中,我们表明,对于SIC MOSFET来说,这不一定是正确的,这只能承受一些此类SC事件。对重复性短路事件的这种低鲁棒性与氧化物中累积的载体注入和泄漏电流导致的栅极降解有关。为了确保在大量SC事件上进行安全操作,我们引入了一个新参数:“重复的临界能量”,该参数对应于SC能量足够低,以避免温度过高,以限制SC事件期间的瞬态门泄漏电流。在此重复的SC能量值之下,SIC设备能够维持大量SC事件(超过1000)。1。简介
图 1. Cas9D10A 切口酶诱导 HD 和 DM1 iPSC 衍生细胞收缩。A) 顶部:用 S100β 和 DAPI 染色的 HD iPSC 衍生星形胶质细胞的代表性共聚焦图像。底部:实验时间线。B) 代表性小池 PCR 印迹显示 HD iPSC 衍生星形胶质细胞的收缩,这些星形胶质细胞仅用 Cas9D10A 转导,或者用 Cas9D10A 切口酶和 sgCTG 转导 6 周。C) 对 HD iPSC 衍生星形胶质细胞的小池 PCR 印迹进行量化。D) 顶部:用 β-Tubulin III 和 DAPI 染色的 HD iPSC 衍生皮质神经元的代表性共聚焦图像。底部:实验时间线。 E) 代表性小池 PCR 印迹显示 HD iPSC 衍生的皮质神经元收缩,这些神经元仅用 Cas9D10A 转导或用 Cas9D10A 和 sgCTG 转导 6 周。F) 对 HD iPSC 衍生的皮质神经元的小池 PCR 印迹进行量化。G) 顶部:用 β-Tubulin III 和 DAPI 染色的 DM1 iPSC 衍生的皮质神经元的代表性共聚焦图像。底部:实验时间线。H) 代表性小池 PCR 印迹显示 HD iPSC 衍生的皮质神经元收缩
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月11日。 https://doi.org/10.1101/2025.02.03.636248 doi:Biorxiv Preprint
图 1。描述运动排序和装袋程序的示意图。Shen 268 分割方案用于提取所有参与者的 fMRI 时间序列。执行清理时,如果其 rmsFD > 0.20 毫米,则在 fMRI 时间序列中识别出运动损坏的时间点 (T)。审查该时间点后,还会删除其前一个 (T – 1) 和两个后续 (T + 1, T + 2) 时间点。然后根据时间点的 rmsFD 值对其进行排序,并使用顶部 minTP 运动污染最少的时间点来计算功能连接(运动排序功能连接矩阵)。对于每个参与者,使用运动排序时间序列计算功能连接矩阵。使用清理后的时间序列执行装袋,方法是选择与预定义阈值(由 minTP 表示)匹配的受运动破坏最少的时间点(按其 rmsFD 值排序),并从 500 次迭代中的运动受限时间点中引导给定大小 TP 的样本(有替换地)并计算功能连接。对于每个参与者,平均装袋功能连接矩阵是通过对得到的 500 个功能连接矩阵(装袋功能连接矩阵)取平均值来计算的。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
推荐引用 推荐引用 Pavlov, Y., Mushtaq, F., Adamian, N., Appelhoff, S., Arvaneh, M., Benwell, C., Beste, C., Bland, A., Bradford, D., Bublatzky, F., Busch, N., Clayson, P., Cruse, D., Czeszumski, A., Dreber, A., Dumas, G., Ehinger, B., Ganis, G., He, X., Hinojosa, J., Huber-Huber, C., Inzlicht, M., Jack, B., Johannesson, M., Jones, R., Kalenkovich, E., Kaltwasser, L., Karimi-Rouzbahani, H., Keil, A., & König, P. (2021) '#EEGManyLabs: Investigating the replicaability of influence EEG 实验”,Cortex,。可从以下网址获取:10.1016/j.cortex.2021.03.013 本文由 PEARL 健康学院免费开放获取。它已被 PEARL 授权管理员接受纳入心理学学院。如需更多信息,请联系 openresearch@plymouth.ac.uk。
摘要 - 本文提出了在高排水源电压下重复定位的SC应力下的商用硅卡比德(SIC)MOSFET设备的短路(SC)性能。研究了两种方案,以评估栅极源电压(V GS)去极化和SC持续时间(T SC)降低的影响。V GS去极化可提供功率密度的降低,并允许在短路持续时间t scmax的情况下保持安全的故障模式(FTO:失败)。结果表明,SIC MOSFET V GS去极化不会降低T SCMAX时的SC循环能力。但是,使用V GS去极化允许将近1000个周期@T SC = 10 µ s的IGBT鲁棒性水平接近IGBT鲁棒性水平。 SC测试期间芯片温度演变的模拟表明,降解归因于SC周期期间的连接温度(T J)的升高,这导致顶部Al诱导裂纹融合到厚氧化物中。
(https://journals.plos.org/plosone/s/materials-and-software-sharing)。各国政府拥有融资能力,必须参与开放科学,例如美国国立卫生研究院(Collins and Tabak,2014 年)和法国政府(https://www.ouvrirlascience.fr/second-national-plan-for-open-science/)。最后,整合开放科学并创造
1 塞格德大学神经病学系,Semmelweis utca 6, H-6725 Szeged, 匈牙利 2 里昂神经科学研究中心 CRNL U1028 UMR5292, INSERM, CNRS, Universit é Claude Bernard Lyon 1, 95 Boulevard Pinel, F-69500 Bron, France 3 心理学博士学院,ELTE Eötvös Lor ánd University, Izabella utca 46, H-1064 布达佩斯,匈牙利 4 大脑、记忆和语言研究组,认知神经科学和心理学研究所,自然科学研究中心,Magyar Tud ó sok Kör ú tja 2, H-1117 布达佩斯,匈牙利 5 心理学研究所,ELTE Eötvös Lor á nd大学, Izabella utca 46, H-1064 布达佩斯,匈牙利 6 塞格德大学放射学系,Semmelweis utca 6,H-6725 塞格德,匈牙利 7 弗莱堡大学医学院解剖学和细胞生物学研究所神经解剖学系,Albertstrasse 17,D-79104 弗莱堡,德国 8 BML-NAP 研究小组,心理学研究所 & 认知神经科学和心理学研究所,ELTE Eötvös Lor ánd 大学 & 自然科学研究中心,Damjanich utca 41,H-1072 布达佩斯,匈牙利 * 通讯地址:nemethd@gmail.com † 这些作者对这项工作做出了同等贡献。