SPEAR 提供便携式、紧凑且可部署的高功率电磁 (HPEM) 源,作为针对单个和群体无人机威胁的定向能武器。该创新系统设计为有意、单脉冲重复率、高功率电磁辐射器。由于其便携尺寸、重量轻、功率要求低和有效性,SPEAR 为地面车辆、固定平台和野战部队提供反小型无人机系统 (C-sUAS) 能力。
避免最小输入量,以防止连接损害,降低产量和图书馆质量的不一致性和较低的图书馆复杂性。最小样本输入量增加了库的准备失败率。它们还需要更多的PCR周期,导致高百分比重复率和降低的映射率。低样品浓度在准确的定量和归一化方面构成了挑战,尤其是在RNA污染中,这可能会偏向归一化的努力并引入噪声(所有样品的关键点,但对于低输入和低质量样品(如FFPE)尤其如此)。
高维光子态 (qudits) 对于提高量子通信的信息容量、噪声鲁棒性和数据速率至关重要。时间箱纠缠量子位元是通过光纤网络实现高维量子通信的有希望的候选者,其处理速率接近传统电信的速率。然而,它们的使用受到相位不稳定性、时间不准确性以及时间箱处理所需的干涉方案的低可扩展性的阻碍。同样,增加每个光子状态的时间箱数量通常需要降低系统的重复率,进而影响有效量子位元速率。在这里,我们展示了一个光纤尾纤集成光子平台,该平台能够通过片上干涉系统在电信 C 波段生成和处理皮秒间隔的时间箱纠缠量子位元。我们通过实验演示了具有时间纠缠量子的 Bennett-Brassard-Mermin 1992 量子密钥分发协议,并通过展示维度缩放而不牺牲重复率,将其扩展到 60 公里长的光纤链路。我们的方法能够以标准电信通信的典型处理速度(10 GHz 的 GHz 速度)操纵时间纠缠量子,并且每个单频信道具有高量子信息容量,这代表着朝着在标准多用户光纤网络中高效实现高数据速率量子通信迈出了重要一步。
注释:1. 由于我们持续进行产品改进计划,规格如有变更,恕不另行通知。2. 所有规格均为 800 kHz 规格。3. 预热时间后,冷却器温度 = 23 +/- 0.1°C 4. 最大传输率下,可变衰减器和过程快门的最大功率。5. 800 kHz 操作下的 DUV 自相关。6. 超过 8 小时,±1°C 环境温度。7. 单脉冲操作(突发数 = 1)。8. 稳定状态(无脉冲选通或脉冲重复率变化)。9. M x 2 和 M y 2 的平均值。
摘要。在辐射高度重复速率(1 kHz - 1 kHz - 1 mHz)flest(1 kHz - 1 MHz)fomettecond(450 fs)乘以最常用的三种商业聚合物(聚(PVC),聚(PVC),聚乙二醇)(PET)和聚丙烯(PP)的响应据报道,NM(均为1.40 j/cm 2)和1030 nm(1.70 j/cm 2)的NM(1.40 j/cm 2)均报道,获得了有关吸收机制如何影响这些材料的加工效率的研究。 可调节的消融深度和直径是通过在恒定功能和脉冲数量下修改重复速率来完成的。 结果突出了吸收机制,重复速率范围和材料的热特性的作用,以使消融效率受益。 此外,高重复率的使用改善了激光处理,减少了扩展的热效应并增加了消融均匀性。最常用的三种商业聚合物(聚(PVC),聚(PVC),聚乙二醇)(PET)和聚丙烯(PP)的响应据报道,NM(均为1.40 j/cm 2)和1030 nm(1.70 j/cm 2)的NM(1.40 j/cm 2)均报道,获得了有关吸收机制如何影响这些材料的加工效率的研究。可调节的消融深度和直径是通过在恒定功能和脉冲数量下修改重复速率来完成的。结果突出了吸收机制,重复速率范围和材料的热特性的作用,以使消融效率受益。此外,高重复率的使用改善了激光处理,减少了扩展的热效应并增加了消融均匀性。
概述 Trimble ® AX60 是一款高性能、多功能、完全集成的机载激光雷达解决方案,旨在满足大多数航空测量要求。它使用脉冲重复率 (PRR) 为 400 kHz 的强大激光系统,以高分辨率捕获非常密集的点云。该解决方案还采用了同步多脉冲处理、回波数字化和波形分析等先进技术。凭借其 Trimble 飞行规划和传感器管理软件以及 Trimble Inpho 处理软件,AX60 被设计为端到端解决方案,可提供无与伦比的性能、操作灵活性和效率以及服务可靠性。同时,它为航空测量公司提供了较低的拥有成本,而 Trimble 的全球组织则提供长期的生命周期支持。
科学原理 随着 70 年代大规模光学成像星载传感器的出现,人们发现了一种工具,可以定性但概括性地观察和监测地球表面。这些传感器的最大优点是覆盖范围广、重复率高,其中最突出的例子是高级甚高分辨率辐射计 (AVHRR),能够及时观察不断变化的大规模现象。随着 1986 年美国沿海区域彩色扫描仪任务 (CZCS) 的结束,科学海洋学界要求一种新的太空海洋颜色观测系统,以便更准确地测定海洋成分,例如叶绿素、悬浮物和腐烂的有机物,从而提供
重复性操作 重复性创伤障碍发展的一个主要风险因素是动作重复的频率。根据观察和对经验丰富的方法工程师的采访,缝纫工作被分为需要高、中或低重复性手动操作的作业。虽然分类有些主观,但它与手部和手腕姿势变化的频率密切相关。高强度的手动操作几乎与全身的更高程度的身体不适有关。最严重的不适集中在颈部、上背部和中背部、右肩和手部。73% 的高操作工人报告右手疼痛,这是分析中发现的最高不适频率。这与 Vihma 等人 (1982) 的发现一致,即手部疼痛与重复率之间存在显著关系。