●在Milano-Bicocca和Ciemat中测试的HD-XA PDE●相同的sipms(在CIEMAT和MIB之间交换),但不同的WLS栏●这些四个配置在Protodune-HD NP04中同样表示,并且在数字和位置W.R.T.中平衡。横梁,进行公平比较●跨言论校正
1美国麻省理工学院和哈佛大学,美国马萨诸塞州剑桥市02142,美国。2美国马萨诸塞州剑桥市艺术与科学学院有机和进化生物学系,美国马萨诸塞州02138,美国。3美国霍华德·休斯医学研究所,美国医学博士20815,美国。4 Harvard-Mit健康科学与技术计划,美国马萨诸塞州剑桥市02139,美国。 5哈佛/麻省理工学院MD-PHD计划,美国马萨诸塞州波士顿,美国02115。 6系统,合成和定量生物学博士学位课程,系统生物学系,哈佛医学院,马萨诸塞州波士顿,美国马萨诸塞州02115。 7英国爱丁堡大学生态与进化研究所。 8 Fathom信息设计,马萨诸塞州波士顿,美国92114,美国9马萨诸塞州公共卫生部,马萨诸塞州波士顿,马萨诸塞州02108,美国。 10免疫学和传染病系,哈佛T.H. Chan公共卫生学院,哈佛大学,波士顿,马萨诸塞州02115,美国。 11马萨诸塞州病原体准备的联盟,哈佛大学,哈佛大学,波士顿,马萨诸塞州,美国02115,美国。 12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。 †函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。 抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。 杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。4 Harvard-Mit健康科学与技术计划,美国马萨诸塞州剑桥市02139,美国。5哈佛/麻省理工学院MD-PHD计划,美国马萨诸塞州波士顿,美国02115。6系统,合成和定量生物学博士学位课程,系统生物学系,哈佛医学院,马萨诸塞州波士顿,美国马萨诸塞州02115。7英国爱丁堡大学生态与进化研究所。8 Fathom信息设计,马萨诸塞州波士顿,美国92114,美国9马萨诸塞州公共卫生部,马萨诸塞州波士顿,马萨诸塞州02108,美国。10免疫学和传染病系,哈佛T.H. Chan公共卫生学院,哈佛大学,波士顿,马萨诸塞州02115,美国。 11马萨诸塞州病原体准备的联盟,哈佛大学,哈佛大学,波士顿,马萨诸塞州,美国02115,美国。 12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。 †函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。 抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。 杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。10免疫学和传染病系,哈佛T.H.Chan公共卫生学院,哈佛大学,波士顿,马萨诸塞州02115,美国。 11马萨诸塞州病原体准备的联盟,哈佛大学,哈佛大学,波士顿,马萨诸塞州,美国02115,美国。 12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。 †函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。 抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。 杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。Chan公共卫生学院,哈佛大学,波士顿,马萨诸塞州02115,美国。11马萨诸塞州病原体准备的联盟,哈佛大学,哈佛大学,波士顿,马萨诸塞州,美国02115,美国。12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。 †函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。 抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。 杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。12计算机科学系,工程与应用科学学院,哈佛大学,波士顿,马萨诸塞州02134,美国。†函数:ispecht@broadinstitute.org,pvarilly@broadinstitute.org。抽象传播重建 - 对谁感染了疾病暴发中的人的推论 - 对病原体如何扩散和为目标控制措施提供机会的关键见解。杜松的中心是下一代测序观察到的主机内变体频率的统计模型,我们在超过160,000多个深入序列的SARS-COV-2基因组的数据集上验证了该模型。我们开发了杜松(系统发育和流行病学重建的关节基础网络推断),这是一种高度估计的病原体爆发重建工具,结合了host内变化,不完全采样和算法平行化。将这种内部内部变化模型与人口水平的进化模型结合在一起,我们开发了一种同时推断系统发育和传播树的方法。我们在计算机生成的爆发和实际爆发中对杜松进行了基准测试,其中传输链接已知或在流行病学上得到证实。我们演示了杜松的
与从 LiDAR 数据和多视图影像重建相比,倾斜影像重建是大规模城市建模的重要研究问题和经济解决方案。然而,建筑物足迹和立面的部分不可见性、严重的阴影效应以及大范围区域内建筑物高度的极端变化等若干挑战将现有的基于单目影像的建筑物重建研究限制在某些应用场景中,即从近地面影像建模简单的低层建筑物。在本研究中,我们提出了一种新颖的单目遥感影像 3D 建筑物重建方法,解决了上述困难,从而为更复杂的场景提供了一种有吸引力的解决方案。我们设计了一个多任务建筑物重建网络 MTBR-Net,通过四个语义相关任务和三个偏移相关任务来学习倾斜影像的几何属性、3D 建筑物模型的关键组件及其关系。网络输出通过基于先验知识的 3D 模型优化方法进一步集成,以生成最终的 3D 建筑模型。在公共 3D 重建数据集和新发布的数据集上的结果表明,与目前最先进的方法相比,我们的方法将高度估计性能提高了 40% 以上,将分割 F1 分数提高了 2% - 4%。
●对应急发电机和国家设备的发电设备的提升限制和波浪检查已被破坏。●教育拥有保险的消费者,他们可以收到其保险公司支付的额外生活费用,以至少解决他们对庇护所的近期需求(即酒店与健身房)。●因这种灾难而流离失所的人所面对的道路可能是漫长而艰巨的道路。问题的很大一部分是从公共和私营部门的各种组织中,人们需要的服务的分散性质。美国数字响应具有资源和专业知识,可以帮助设计以人为本的“旅程” - 实际上是一站式商店。●在短期内,我们还需要放下障碍,以允许本地信仰和慈善组织在后果中提供援助。奇诺山(Chino Hills)的Calvary Chapel的Jack Hibbs牧师正在与Golden一起加入,努力动员教会和其他礼拜场所,以帮助流离失所的家庭并支持急救人员。●保险是焦虑的主要来源。尽管我们需要对整个监管框架进行长期改革(见下文),但在短期内,我们提议要求联邦政府(通过FEMA提供的最适当交付的联邦政府提供保险预付款”担保,这将使现在可以收到所有付款,并在后来的保险公司偿还。
从2013年到2023年,近15倍上州就业增长率的15倍。 此外,在北部社区中,工作艺术家是人口始终增长的少数部分。 在纽约州北部,居民艺术家人口增长了21%。 可悲的是,我们创意产业中的这些快速转变超过了国家经济发展工具以支持工人。 例如,上州(区域经济发展委员会)REDC仅授予了2021年与艺术和文化有关的所有赠款的3.7%。 此外,在2022年全纽约州的104个DRI项目中,只有12个与艺术和文化有关。 1资金来支持这一增长的经济工具,反过来,增长对经济的积极影响正在减少,而与艺术和艺术相关的就业资金的资金在政府和慈善部门都下降了。 ●该州的经济决策者不能闲置。 我们的领导人必须开发从2013年到2023年,近15倍上州就业增长率的15倍。此外,在北部社区中,工作艺术家是人口始终增长的少数部分。在纽约州北部,居民艺术家人口增长了21%。可悲的是,我们创意产业中的这些快速转变超过了国家经济发展工具以支持工人。例如,上州(区域经济发展委员会)REDC仅授予了2021年与艺术和文化有关的所有赠款的3.7%。此外,在2022年全纽约州的104个DRI项目中,只有12个与艺术和文化有关。1资金来支持这一增长的经济工具,反过来,增长对经济的积极影响正在减少,而与艺术和艺术相关的就业资金的资金在政府和慈善部门都下降了。●该州的经济决策者不能闲置。我们的领导人必须开发
和一个锅的不同)或意图(例如通过刀与使用它进行切割),我们人类可以毫不费力地描绘出与日常生活中日常物体的这种互动。在这项工作中,我们的目标是构建一个可以同样生成合理的手动配置的计算系统。具体来说,我们学习了一个基于扩散的常规模型,该模型捕获了3D相互作用期间手和对象的关节分布。给定一个类别的描述,例如“握着板的手”,我们的生成模型可以合成人手的相对配置和表达(见图1个顶部)。我们解决的一个关键问题是,该模型是什么好的HOI表示。通常通过空间(签名)距离场来描述对象形状,但人的手通常是通过由发音变量控制的参数网格建模的。我们提出了一个均匀的HOI表示,而不是在生成模型中对这些不同的代表进行建模,并表明这允许学习一个共同生成手和对象的3D扩散模型。除了能够合成各种合理的手和物体形状的综合外,我们的扩散模型还可以在跨任务的辅助推理之前作为通用,而这种表示是所需的输出。例如,重建或预测相互作用的问题对于旨在向人类学习的机器人或试图帮助他们的虚拟助手来说是核心重要性。重建的视频重新投影错误)或约束(例如我们考虑了这些行沿着这些行的两个经过深入研究的任务:i)从日常交互剪辑中重建3D手对象形状,ii)鉴于任意对象网格,合成了合理的人类grasps。为了利用学到的生成模型作为推论的先验,我们注意到我们的扩散模型允许在任何手动对象配置给定的(近似)log-likelihood梯度计算(近似)log-likelihoodhoodhood。我们将其纳入优化框架中,该框架结合了先前的基于可能性的指南与特定于任务的目标(例如已知对象网格的合成)推理。虽然理解手动相互作用是一个非常流行的研究领域,但现实世界中的数据集限制了3D中这种相互作用的限制仍然很少。因此,我们汇总了7种不同的现实世界交互数据集,从而导致157个对象类别的相互作用长期收集,并在这些范围内训练共享模型。据我们所知,我们的工作代表了第一个可以共同生成手和对象的生成模型,并且我们表明它允许综合跨类别的各种手动相互作用。此外,我们还经验评估了基于视频的重建和人类掌握合成的任务的先前指导的推断,并发现我们所学的先验可以帮助完成这两个任务,甚至可以改善特定于特定于任务的状态方法。
过渡金属二甲化物(TMDS)的扭曲双层揭示了丰富的激子景观,包括混合激子和空间捕获的Moiré激子,占主导地位的材料光学响应。最近的研究表明,在低扭转角度方面,晶格经历了显着的松弛,以最大程度地减少局部堆叠能量。在这里,出现了低能堆叠配置的大域,通过应变使晶格变形,从而影响电子带结构。然而,到目前为止,原子重建对激子能量景观和光学特性的直接影响尚未得到充分了解。在这里,我们采用了微观和材料特异性方法,并预测了重建的晶格中Moiré激子的潜在深度发生了显着变化,并且自然堆叠的TMD TMD同质同层中发生了最大的变化。与刚性晶格相比,我们显示了多个频段的外观,并且捕获位点位置的显着变化。最重要的是,我们预测WSE 2同类体的光学吸收中出现了多发结构 - 与主导刚性晶格的单个峰相比。此发现可以被利用为在天然堆积的扭曲同性恋者中Moiré激子光谱中原子重建的明确特征。
我们提出了来自单眼RGB视频的动态3D头部重建的单眼神经参数头模型(Mono NPHM)。到此为止,我们提出了一个潜在的空间空间,该空间在神经参数模型的顶部参数化纹理场。我们限制了预测的颜色阀与基础几何形状相关,以便RGB的梯度有效地影响反向渲染过程中的潜在几何代码。为了提高表达空间的代表能力,我们使用超二维增强了向后变形场,从而在拓扑具有挑战性的表达式中显示出颜色和几何表示。使用Mono NPHM作为先验,我们使用基于符号距离字段的体积渲染来处理3D头重建的任务。通过nu毫无反转,我们使用面部锚点构成了具有里程碑意义的损失,这些损失与我们的规范几何表示紧密相关。为了评估单眼RGB视频的动态面部重建任务,我们在休闲条件下记录了20个具有挑战性的Kinect序列。单nphm超过 -
摘要。过去气候的定量重建是19评估气候模型如何重现气候变化的重要资源。一种广泛使用的统计20方法,用于从化石生物组合进行此类重建的方法加权21平均部分最小二乘回归(WA-PLS)。然而,已知的22个WA-PLS产生重建的趋势是压缩到用于校准的气候范围的中心的重建,可能会偏向重建的过去气候。我们通过假设:(a)相对于所考虑的气候变量,每个分类单元的理论丰度为25个单峰; (b)观察到的分类单元丰度26遵循多项式分布,其中样品的总丰度在气候上是27个不明智的; (c)在给定站点和时间的气候价值的估计使得28个观察结果最有可能,即它最大化对数可能性函数。此气候29估计值是通过将其气候公差的30反平方平方的加权分类单元丰度近似。我们通过考虑训练数据集中气候变量的频率31(FX)进一步改善方法。与WA-PLS相比,具有FX校正的TWA-PLS大大减少了压缩偏置,并基于广泛的现代花粉数据集改善了33个重建的模型性能。34
从单个视图中恢复3D场景几何形状是计算机视觉中的基本问题。虽然经典的深度估计方法仅推断出2.5D场景表示为图像平面,但最新的基于辐射范围的aperach是重建完整的3D代表。然而,这些方法仍然在被占地的区域困难,因为没有视觉观察的几何形状需要(i)周围的语义知识,以及(ii)关于空间上下文的推理。我们提出了Kyn,这是一种单视场景重建的新方法,其原因是语义和空间上下文来预测每个点的密度。我们引入了一个视觉模块模块,以使用细粒度的语义信息丰富点特征。我们通过语言引导的空间注意机制在整个场景中汇总了点表示,以产生意识到3D语义环境的每点密度预测。我们表明,与预测每个3D点的密度相比,Kyn改善了3D形状的恢复。我们在Kitti-360上实现了最新的场景和对象重建结果,并且与先前的工作相比,零弹性概括的改进。项目页面:https://ruili3.github.io/kyn。
