持续学习(CL)构成了深层神经网络(DNN)的重大挑战,这是由于灾难性的忘记在引入新的任务时对先前获得的任务的灾难性忘记。人类在学习和适应新任务的情况下擅长而无需忘记,这是通过大脑中的融合学习系统归因于抽象体验的彩排的能力。这项研究旨在复制和验证Birt的发现,Birt的发现是一种新型方法,利用视觉变压器来增强表示练习的代表性,以进行持续学习。birt在视觉变压器的各个阶段引入了建设性噪声,并与工作模型的指数移动平均值(以减轻过度拟合并增强鲁棒性)相加。通过复制Birt的方法,我们试图验证其声称的改善,比传统的原始图像排练和香草代表对几个具有挑战性的CLENCHM分析进行排练。此外,这项研究还研究了Birt对自然和对抗性腐败的记忆效率和稳健性,旨在增强其实际适用性。复制将提供对原始论文中介绍的思想的可这种可总合性和普遍性的关键见解。
摘要 - 机器人要探索联合学习(FL)设置至关重要,在这些设置中,几个并行部署的机器人可以独立学习,同时还可以彼此分享他们的学习。现实世界中的这种协作学习要求社交机器人动态适应不可预测和不可预测的情况和不同的任务设置。我们的工作通过探索一个模拟的客厅环境来帮助解决这些挑战,在该环境中,机器人需要学习其行为的社会适当性。首先,我们提出了联合根(FedRoot)平均,这是一种新型的体重聚集策略,它使客户从基于任务的学习中进行学习。第二,为了适应具有挑战性的环境,我们将Fedroot扩展到联合潜伏的生成重播(FedLgr),这是一种新颖的联盟持续学习(FCL)策略,该策略使用基于FedRoot的重量聚集,并将每个客户嵌入了每个客户的生成器模型,以促进伪造的功能嵌入,以使知识的特征嵌入者忽略了一种资源良好的效果。我们的结果表明,基于FedRoot的方法提供竞争性能,同时也导致资源消耗量大幅度降低(CPU使用率高达86%,GPU使用率高达72%)。此外,我们的结果表明,基于FedRoot的FCL方法的表现优于其他方法,同时还提供了有效的解决方案(最多84%的CPU和92%的GPU使用率),FedLGR在评估中提供了最佳结果。
联合学习(FL)已成为分散学习的基石,在许多情况下,传入的数据分布会随着时间的流逝而动态变化,引入持续学习(CL)问题。这项连续的联合学习(CFL)任务提出了独特的挑战,尤其是关于灾难性遗忘和非IID输入数据的挑战。现有解决方案包括使用重播缓冲区来存储历史数据或利用生成对抗网络。尽管如此,由于生成任务的扩散模型的最新进展,本文介绍了DCFL,这是一个量身定制的新型框架,旨在应对动态分布式学习环境中CFL的挑战。我们的方法利用条件扩散模型在通信过程中在每个本地设备上生成综合历史数据的功能,从而有效地减轻动态数据分布输入的潜在变化。我们为拟议的CFL框架提供了融合,并在多个数据集中展示了其有希望的性能,从而展示了其在解决CFL任务复杂性方面的有效性。
自然智力过程经历了连续的流,传感,表演和学习的实时时刻。流学习,经典增强学习(RL)算法(例如Q-学习和TD)的作案手法,通过使用最新样本而无需存储,模仿自然学习。这种方法也是资源约束,通信限制和隐私敏感应用程序的理想选择。但是,在深度RL中,学习者几乎总是使用批处理更新和重播缓冲区,从而使它们在计算上昂贵且与流学习不相容。尽管批处理深度RL的流行率通常归因于其样品效率,但缺乏流式流式RL的更关键原因是其频繁的不稳定性和未能学习,我们将其称为流屏障。本文介绍了Stream-X算法,这是一类Deep RL算法,以克服批次RL的预测和控制以及匹配样品效率的流屏障。通过Mujoco Gym,DM Control和Atari Games的实验,我们通过我们的Stream-X算法展示了现有算法的流屏障和成功的稳定学习:流Q,流AC和Stream TD,在DM控制犬环境中实现最佳的模型无模型性能。一组通用技术是Stream-X算法的基础,可以通过一组超参数获得成功,并允许轻松扩展到其他算法,从而恢复流式的RL。
摘要。3 D传感是自动驾驶汽车的基本任务。其部署通常依赖于对齐的RGB摄像机和激光镜头。谨慎的同步和校准,在LiDAR投影的深度图中,系统的错位持续存在。这是由于两个传感器之间的物理基线距离所致。工件通常反映为背景激光雷达错误地投射到前景上,例如汽车和行人。KITTI数据集使用立体声摄像机作为启发式解决方案来删除工件。但是,大多数AV数据集(包括Nuscenes,Waymo和DDAD)都缺少立体声图像,使Kitti解决方案不适用。我们提出了Replay,这是一种无参数的分析解决方案,用于删除投影伪像。我们在假设的虚拟LiDAR相机和RGB摄像机之间构建了一个Binocular视觉系统。然后,我们通过使用拟议的分析溶液确定面孔闭塞来删除投影伪影。我们显示出具有无伪像的深度图的最先进(SOTA)单眼估计器和3 d对象探测器的一致改进。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年7月29日发布。 https://doi.org/10.1101/2023.02.17.528958 doi:Biorxiv Preprint
摘要 - 路径规划模块是自动驾驶汽车导航的关键模块,它直接影响其操作效率和安全性。在具有许多障碍的复杂环境中,传统的计划算法通常无法满足智力的需求,这可能会导致诸如无人车辆中的死区之类的问题。本文提出了一种基于DDQN的路径计划算法,并将其与优先的体验重播方法相结合,以解决传统路径计划算法通常属于死区的问题。一系列的仿真实验结果证明,基于DDQN的路径计划算法在速度和准确性方面明显优于其他方法,尤其是在极端环境中突破死区的能力。研究表明,基于DDQN的路径计划算法在路径质量和安全性方面表现良好。这些研究结果为自动驾驶自动导航的研究提供了重要的参考。
摘要 - 将无人驾驶汽车(UAV)整合到搜救(SAR)任务中提出了提高运营效率和有效性的有前途的途径。但是,这些任务的成功不仅取决于无人机的技术能力,还取决于他们的接受和与人类在地面上的互动。本文探讨了以人为中心因素对SAR任务的无人机轨迹计划的影响。我们介绍了一种基于分析层次结构过程增强的强化学习和基于新颖的相似性的经验重播,以优化无人机轨迹,平衡运营目标与人类舒适性和安全考虑因素。另外,通过一项全面的调查,我们研究了性别线索和拟人化设计对无人机设计对公众接受和信任的影响,从而揭示了对SAR中无人机互动策略的重大影响。我们的贡献包括(1)无人机轨迹计划的增强学习框架,该框架动态整合了多目标考虑因素,(2)对人类对性别和拟人化无人机的看法在SAR上下文中的分析,(3)基于相似性的经验重播的应用,以在复杂的SAR场景中提高学习效率。这些发现为设计无人机系统提供了宝贵的见解,这些系统不仅在技术上熟练,而且还与以人为本的价值观保持一致。
摘要:为了应对不断发展的网络威胁,入侵检测系统已成为网络安全的关键组成部分。与基于签名的入侵检测方法相比,基于异常的方法通常采用机器学习技术来训练检测模型,并具有发现未知攻击的能力。然而,由于数据分布不平衡,入侵检测方法面临少数群体攻击低检测率的挑战。传统的入侵检测算法通过重新采样或生成合成数据来解决此问题。此外,作为一种与环境相互作用以获得反馈和提高性能的机器学习方法,增强学习逐渐被考虑在入侵检测领域中应用。本文提出了一种基于增强的基于学习的入侵检测方法,该方法创新使用自适应样本分布双重体验重播来增强强化学习算法,旨在有效地解决样本分布不平衡的问题。我们还开发了专门为入侵检测任务设计的强化学习环境。实验结果表明,所提出的模型在NSL-KDD,AWID和CICIOT2023数据集上实现了有利的性能,从而有效地处理了不平衡的数据,并在检测少数群体攻击中显示出更好的分类性能。