示例 2:您被要求对学生进行需求分析,但不知道这需要做什么。您问 Bard“我如何对 11 岁的日本 A2 级英语学习学生进行需求分析?”。这会生成一个不太具体的想法列表,其中之一是使用调查来收集数据,因此您接着问:“当我对 11 岁的日本 A2 级英语学习学生进行需求分析时,我可以问什么样的调查问题?”这会生成一个特定的问题列表,然后您可以编辑、选择、重新排列和添加问题,以创建最终的研究工具。然后,您使用 Google 翻译将问题转换成日语。当您获得最终问卷时,您可以请一位精通日语的同事确认或编辑翻译。您应该在方法部分中包括此过程的描述,并列出您使用的 AI 工具。
Intel AI for Enterprise RAG体系结构可确保从知识基础创建到提供最终响应的所有关键组成部分都可以平稳,有效地运行。该体系结构利用Intel®Xeon®处理器进行数据处理和矢量化,而Intel®Gaudi®AI加速器则用于优化LLM/LVM推理,从而为Enterprise用例提供有效的扩展和安全数据处理。此外,Intel®Tibre™AI云在不断跟踪几个关键组件中起着至关重要的作用。检索性能的延迟和准确性受到监控,以确保保留日志进行审核,以确保精确有效的信息传递。重新排列效率以保持上下文相关性和最佳系统速度。推理服务质量可用于衡量延迟和响应质量,并连续登录以进行改进。
(CG)编码抗生素耐药性。主要由EGMS(例如质粒,转座子和冰)佩戴,IRS在很大程度上参与了革兰氏阴性细菌中抗生素耐药性的传播。IRS的关键要素是Inti的整合,它催化了CG的整合和切除,并且其表达是由诱导SOS反应(包括抗生素应力)的应力引起的。我们最近强调,生物膜的生活方式(彼此粘附和表面的细菌)会产生足够的压力,以诱导SOS响应和Integasse Inti的表达,以少量的生物膜细菌(1%),从而允许IR通过IR被IR重新进行CG的收购和重新排列。在环境中,由于人为污染,细菌通常也会暴露于亚抑制浓度的抗生素。这些浓度在抗性传播能力上的作用仍然未知。
超流体是一种迷人而奇特的物质状态,源于极低温度下的量子效应。超流体是一种液体,与传统流体的区别在于没有分子粘性。因此,低速穿过它的物体不会受到任何阻力。超流体的例子有 3He 和 4He、由稀碱性气体制成的玻色-爱因斯坦凝聚体 (BEC)、光学非线性系统中的光以及中子星的核心。超流体的应用范围从冷却超导材料和红外探测器到冷原子和湍流的纯基础研究。超流体湍流中最明显的量子效应是量子涡旋的存在。这种涡旋就像原子龙卷风,具有量化的循环。在 3He 和 4He 以及原子 BEC 等系统中,量子涡旋表现为流体动力学涡旋,重新连接和重新排列其拓扑结构。
・每位学生阅读论坛中提交的意见,并在纸质工作表上写下五种令他们印象最深刻的意见。 ・让学生花足够的时间阅读朋友的意见并仔细阅读。 *特意关闭鼓掌功能,让学生在工作表上写下自己的意见,以便学生仔细阅读。 *卡片上的名字被隐藏,以便学生可以不带先入之见地阅读。 ・在工作表上写下自己的意见后,学生打开鼓掌功能并为自己选择的意见鼓掌。显示卡片上的名字,重新排列卡片以便鼓掌,然后将卡片分享给全班。学生在查看谁写了这些意见后发表自己的意见,例如说“我很惊讶那是XX先生的意见”,或“我和XX先生有同样的看法”。
摘要:在转录,DNA复制和修复过程中,染色质结构经常进行调节以揭示特定的遗传区域并允许进入DNA相互作用的酶。ATP依赖性染色质重塑络合物使用ATP水解的能量通过重新定位和重新排列核小体来修饰染色质结构。这些复合物由保守的SNF2(催化ATPase亚基)定义,并分为四个家庭:CHD,SWI/SNF,ISWI和INO80。ATP依赖性染色质重塑者对于调节包括内耳在内的许多器官的发育和干细胞生物学至关重要。此外,编码为染色质重塑者一部分的蛋白质的基因突变已与许多神经感觉聋的情况有关。在这篇综述中,我们描述了这些复合物的组成,结构和功能活性,并讨论它们如何促进听力和神经感觉的耳聋。
b)吉尔福德扩大了智力的概念。根据他的说法,有两种类型的思考:i)融合思维 - 解决一个具有正确答案的问题; ii)不同的思维 - 到达许多可能的解决方案。这主要是创造性的思维。他提出了一个三维理论,该理论在立方模型中表示。吉尔福德坚持认为,情报测试项目应区分对内容和产生的产品进行的操作的Interms。该模型提供了120个智能因素,这是4个内容,5个操作和6种产品的组合收益率。假设要求受试者重新排列单词,例如ceiv,nerte,形成熟悉的单词(vice,enter)。内容是象征性的;由于测试涉及一组字母符号;操作是“认知”,因为它需要识别信息,而产品单元是一个词。
摘要 通过恒电流间歇滴定技术在 3 至 4.2 V 电压范围内测定了 LiNi 1/3 Mn 1/3 Co 1/3 O 2 中的化学扩散系数。在充电和放电过程中,这些层状氧化物正极中的计算扩散系数分别在开路电压 3.8 V 和 3.7 V vs. Li/Li + 时达到最小。观察到的化学扩散系数的最小值表明在此电压范围内发生了相变。使用非原位晶体学分析确定了不同锂化状态下 LiNi 1/3 Mn 1/3 Co 1/3 O 2 正极的晶胞参数。结果表明,晶胞参数变化与 NMC 正极中化学扩散的观测值相关性很好;在同一电压范围内,绝对值有显著变化。我们将观察到的晶胞参数变化与镍转化为三价状态(具有 Jahn-Teller 活性)以及锂离子和空位的重新排列联系起来。
简介 正如我们今天的理解,“颗粒小行星”或“重力聚集体”是一种自然形成的天体,它是由离散的固体成分聚集而成,这些成分通过自身的重力、内聚力和附着力 1 结合在一起。DART 对小行星 Dimorphos 的撞击是超音速的,除了改变其轨道外,还使其处于不同的自旋状态。这些能量应主要通过小行星粒子之间的摩擦和它们的重新排列而消散,直到达到新的低能量结构。在本文中,我们想要了解具有相同动量的撞击者是否能对自引力体造成相同的“损害”或提供相同的“推力”,以及传递给系统的能量是如何消散的。我们将使用 Soft-Sphere DEM 代码 [1、2、3、4、5、6、7] 进行这项研究,因为我们知道一旦达到超音速撞击速度,结果将变得不切实际。然而,在达到该极限之前,观察目标的动态行为是否会出现任何趋势将会很有趣。
使用比较器技术结合圆闭合原理,无需参考单独校准的参考工件,即可对多面镜、分度台和旋转台以及角度编码器的角度划分进行全圆校准。后者是平面角度的自然守恒定律,自欧几里得时代以来就广为人知,表示平面上任何一点周围的角度之和等于 2 � 弧度 (360 � )。如果将圆分成 n 个角段 A 1 、A 2 、 。..、A n 以及每个角段与未知参考角 X 之间的差异进行测量,则闭合为数据提供了约束,从而能够为所有 n + 1 个未知数提供完整的解决方案。圆闭合是众多自证比较技术之一,采用多次测量以及对测量系统组件进行适当的重新排列。参考文献 [1] 回顾了此类技术及其在尺寸计量中的应用。