2纽约大学化学系,纽约,纽约10003,美国 *通讯作者。电子邮件:bw@tsinghua.edu.cn(B.W.); ned.seeman@nyu.edu(n.c.s.)。抽象的分支DNA基序是所有合成DNA纳米结构的基本结构元素。但是,分支方向的精确控制仍然是进一步增强整体结构秩序的关键挑战。在这项研究中,我们使用两种策略来控制分支方向。第一个基于固定的霍利迪连接,该连接在分支点上采用特定的核苷酸序列,以决定其方向。第二个策略是使用角度构造支柱在分支点上使用柔性垫片固定分支方向。我们还证明,可以通过规范的Watson-Crick碱基配对或非典型的核酶相互作用(例如I-MoTIF和G-Quadruplex)动态地实现分支方向控制。具有从化学环境的精确角度控制和反馈,这些结果将使新型的DNA纳米力学传感设备和精确有序的三维体系结构。在过去的四十年中,随着DNA纳米技术的快速发展,多功能的DNA纳米结构具有越来越增强的复杂性[1] [1]。作为分支结构基序在DNA纳米结构中无处不在,对螺旋分支的精确角度控制是关键挑战之一。相比之下,几何控制在很大程度上避开了DNA网络设计。对这些方案的拓扑控制已在很大程度上通过序列设计,螺旋时期和连接连通性的处方[2]阐明。Angle and lattice morphology is generally observed to be an emergent property of topological self-assembly—indeed the tensegrity triangle, a hallmark three-dimensional (3D) DNA lattice [3] , has three attainable internal angles, 101 º, 111 º, and 117 º, which is an apparent result of lattice stress by changing the edge length in otherwise topologically-similar structures.考虑到这一点,在现场中,获得更高的结构顺序(包括拓扑和几何特性)仍然是一个关键的挑战,可以作为实现设计师纳米材料功能的更雄心勃勃的目标的基础(例如酶促活动,刚性晶体支架,固定的晶体支架,纳米粒子阵列等)。类似于减数分裂的移动霍利迪交界处的固定的四臂连接是DNA纳米技术中最早的结构图案[2A,4]。它不仅在由无脚手架的DNA“乐高”方法构建的纳米结构中广泛使用[5],而且还使用脚手架的DNA折纸方法在不同的结构中呈现[6]。已证明分支方向由分支点序列[7]和交叉类型[8]定义,这表明了精确几何控制的机会。这种合成性指出了具有精确和动态原子布置的高阶DNA纳米结构的可行性。
可容纳的功率来源在电网管理中是一个关键的Conun鼓,因此,实现可持续的社会技术重新配置的能力严重限制(Sovacool等,2020)。风能和光伏(PV)能量输出在很大程度上是通过环境条件来挖掘的,生产峰不一定与需求和使用行为相匹配。因此,能源存储对于将埃尔吉的交付适应用户的需求至关重要,因为它允许在必要时利用盈余并将其注入网格中,从而避免浪费并减轻分配基础设施的压力(Castillo,Gayme,2014年)。实现功率调整和信号质量控制是使用储能的基本好处。例如,少量的电力生产商具有可累积能源盈余并在销售价格较高时出售它们的利用率,不仅可以平息系统的波动性,还可以提高其经济效率(Diesendorf,Wiedmann,2020年)。此外,众所周知,潜在的财务教授经常是安装小型可再生能源系统的更强大动机之一(Hansen等,2022)。因此,开发工作存储solu
基于卫星的量子通信通道对于超长距离很重要。鉴于卫星通行证的持续时间很短,在卫星通过该区域时,有效地连接全市网络的多个用户可能会很具有挑战性。我们提出了一个具有双功能性的网络:在短暂的卫星通行证中,地面网络被视为多点到点拓扑,所有地面节点都与卫星接收器建立纠缠。在不可用的卫星时,通过单个光学开关将卫星上链路连续到接地节点,并将网络作为配对地面网络配置。我们在数值上模拟了脉冲超键入光子源,并研究提出的网络配置的量子键分布的性能。在卫星接收器利用时间复杂的情况下,我们发现了有利的缩放,而地面节点则利用频率多路复用。可伸缩性,简单的可重新选择性和与纤维网络的易于集成使该体系结构成为许多地面节点和卫星量子通信的有前途的候选人,从而为在全球范围内的地面节点互连铺平了道路。
纠缠对于许多量子应用至关重要,包括量子信息处理,量子模拟和量子增强感应。由于其丰富的内部结构和相互作用,已经提出了分子作为量子科学的有前途的平台。确定性分子的确定性纠缠仍然是长期以来的实验挑战。我们证明了单独制备的分子的需求纠缠。使用通过使用可重构光学镊子阵列制备的分子对之间的电偶极相互作用,我们确定创建了分子的钟形对。我们的结果证明了量子应用所需的关键构建块,并且可能会推进使用捕获分子的量子增强基本物理测试。e
摘要 - 现代的实时系统容易受到网络攻击的影响。越来越多的采用多核平台,安全性和非安全关键任务共存,进一步引入了新的安全挑战。现有的解决方案遭受了缺乏决定论或过多成本的损失。本文解决了这些缺点,并提出了一个离线分析,以计算在多核平台上运行的实时任务的所有可行时间表,从而隔离损害任务,同时保证失败操作系统和低成本可重构计划。使用UAV自动驾驶系统在四核平台(Raspberry PI)上使用UAV自动驾驶系统的实验结果表明,所提出的方案会在微秒级别上造成运行时恢复开销。此外,在合成测试案例中,重新配置过程最多涵盖了所有可能的响应的100%。索引项 - 真实时间系统,计划重新配置,多核,安全性。
图形的k颜色图将图的每个顶点映射到{1,2,。。。,k},因此没有两个相邻的顶点获得相同的颜色。给定图形的k色,kempe变化通过将颜色交换在双色连接的组件中而产生新的k色。我们研究了发现给定的k颜色转换为另一个给定的k颜色所需的最小kempe变化的复杂性。我们表明,这个问题在路径图上接受了多项式的动态编程算法,事实证明这是高度不平凡的。此外,问题即使在星形图上也是np-hard,我们在此类图上表明,它可以接受恒定的因子近似算法,并且当通过颜色数k进行参数时,可固定的参数可触及。硬度结果以及算法结果基于规范转换的概念。
深神经网络(DNN)的几何描述有可能发现神经科学中计算模型的核心代表原理。在这里,我们通过量化其自然图像表示的潜在维度来检查视觉皮层的DNN模型的几何形状。流行的观点认为,最佳DNNS将其表示形式压缩到低维子空间以实现不变性和鲁棒性,这表明更好的视觉皮层模型应具有较低的维几何形状。令人惊讶的是,我们发现相反方向的强烈趋势 - 具有高维图像子空间的神经网络在预测猴子电生理学和人类FMRI数据中对持有刺激的皮质反应时倾向于具有更好的概括性能。此外,我们发现,在学习新的刺激类别时,高维度与更好的性能相关,这表明更高的维度表示更适合于概括其训练领域。这些发现提出了一个一般原则,高维几何形状赋予了视觉皮层DNN模型的计算益处。
摘要 - 在本文中,我们专注于通过使用车辆到基础结构(V2I)链接从蜂窝车辆(CVS)卸载的任务来提高自主驾驶安全性,并将其转移到多访问Edge Computing(MEC)服务器。考虑到可以将用于V2I链路的频率重复用于车辆到车辆(V2V)通信以改善频谱利用率,因此每个V2I链接的接收器可能会严重干扰,从而导致任务卸载过程中的中断。为了解决这个问题,我们建议部署可重新配置的智能构成表面(RIC),不仅可以启用V2I反射性链接,而且还可以在V2V链接处取消利用其超材料的计算能力。我们为CVS和MEC服务器之间的任务卸载比率,V2V和V2I通信之间的频谱共享策略以及RICS反射和折射矩阵设计了联合优化公式,目的是最大程度地利用基于安全的自动驱动任务。由于问题的非跨性别性和自由变量之间的耦合,我们将其转换为更易于处理的等效形式,然后将其分解为三个子问题,并通过替代近似方法求解。我们的仿真结果证明了拟议的RIC优化在提高自动驾驶网络安全性方面的有效性。索引项 - 功能,自动驾驶,多访问边缘计算,频谱共享,任务卸载。
•美国西北大学SEDA OGRENCI•美国AMD的Stephen Neuendorffer•NHAN TRAN,美国费米拉布,美国•弗雷德里克·克乔尔斯塔德(Fredrik Kjolstad),美国斯坦福大学,美国•英国剑桥,德比亚斯·格罗瑟(Tobias Grosser)开源软件的流行率,以及对开源硬件的兴趣越来越多,可重新配置的技术在很大程度上是由专有的,封闭的工具提供的,这些工具与专有硬件架构紧密相关。鉴于这些工具和体系结构的复杂性,缺乏开放源解决方案历史上为该地区的教育,研究和创新带来了重大障碍。但是,最近,新的开源工具和方法涵盖了高水平合成和物理设计流的整个范围。在新型加速器体系结构支持机器学习的最新爆炸中,似乎正在重复类似的模式。尽管CPU和GPU体系结构的汇编通过大量开源项目(例如GCC和Clang/LLVM)支持了对新型Accelerator Architectures的支持,但尚未上游。本期特刊的目的是强调与可重构设备有关的开源软件和硬件技术的最新研究和开发,例如FPGA和CGRA,以及其他新型的加速器架构。它将包含涵盖广泛主题的文章,包括用于设计,优化,调试和机器学习的开源工具,针对从单个设备到分布式系统以及开源硬件和系统设计的广泛设计范围。本期特刊将成为嵌入式系统,计算机架构,设计自动化,特定领域的加速度和其他相关领域领域的研究人员,工程师和从业人员的宝贵资源,而感兴趣的主题包括但不限于以下开源解决方案:
我们引入了一个更有效的股份 - 股票,然后又有agre-agre-agre-eccast范式,用于构建ADKR,并保留自适应安全性。该方法替代了经典ADKG中昂贵的O(n)Asyn-Chronous-Chronous可验证秘密共享协议,其中O(n)便宜的公开共享成绩单的分布更便宜;在共识确认一组成品的分解后,它选择了一个小的κ-subset以进行验证,将总开销从O(n 3)降低至O(κn 2),其中κ是一个小的常数(通常约为30或更少)。为了进一步优化具体效率,我们提出了一种具有线性通信的交互式原始效率,以生成可公开可验证的秘密共享(PVSS)转录本,避免了计算上昂贵的非相互作用PVSS。此外,我们引入了分布式PVSS验证机制,最大程度地减少了不同各方的重复计算,并将主导的PVSS验证成本降低了约三分之一。