摘要 众所周知,已故的胡塞尔曾警告人们,将物理理论的核心数学模型具体化和客观化是危险的。尽管胡塞尔的担忧主要针对伽利略物理学,但我们本文的首要目标是表明,他的许多批判性论点在今天同样具有现实意义。通过讨论量子理论的形式主义和当前的解释,我们说明了围绕自然数学化的话题是如何自然而然地浮出水面的。我们的第二个目标是考虑重建量子理论的计划,该计划目前在量子基础领域很受欢迎。最后,我们将论证,从这个角度来看,现象学和量子理论关于透视性的某些见解非常一致。我们通过本文的总体希望是表明现象学和现代物理学之间有很大的相互学习空间。
现有的大多数声学超材料依赖于具有固定配置的架构结构,因此,一旦结构制成,其属性就无法进行调制。新兴的主动声学超材料为按需切换属性状态提供了有希望的机会;然而,它们通常需要束缚负载,例如机械压缩或气动驱动。使用不受束缚的物理刺激来主动切换声学超材料的属性状态仍未得到很大程度上的探索。在这里,受鲨鱼皮小齿的启发,我们提出了一类主动声学超材料,其配置可以通过不受束缚的磁场按需切换,从而实现声学传输、波导、逻辑运算和互易性的主动切换。关键机制依赖于磁可变形米氏谐振器柱 (MRP) 阵列,这些阵列可以在垂直和弯曲状态之间调整,分别对应于声学禁止和传导。 MRP 由磁活性弹性体制成,具有波浪形空气通道,可在设计的频率范围内实现人工米氏共振。米氏共振会诱发声学带隙,当柱子被足够大的磁场选择性弯曲时,声学带隙会闭合。这些磁活性 MRP 还可用于设计刺激控制的可重构声学开关、逻辑门和二极管。本范例能够创建第一代不受束缚的刺激诱导的主动声学元设备,可能具有广泛的工程应用,包括从噪声控制和音频调制到声波伪装。
摘要 — 本文旨在研究在存在可再生能源并考虑动态线路额定值 (DLR) 约束的情况下随机可重构混合交直流微电网 (MG) 的最优调度。DLR 是一个实际限制,可能会影响线路的载流量,特别是在孤岛模式下,当线路在与公用事业互连点缺乏主发电源时达到最大容量。为了防止线路过载,开发了重构技术,通过一些预置开关来改变网络的拓扑结构。采用线性化技术来解决节点交流功率流和 DLR 约束的非线性问题。无迹变换技术用于模拟不确定性,包括可再生能源发电、每小时负荷需求和每小时市场价格以及 DLR 不确定性,例如太阳辐射、风速和环境温度。最后,进行敏感性分析,以了解风速和太阳辐射对混合交流-直流 MG 能量管理的影响。在改进的 IEEE-33 总线测试系统上检查了所提出方法的性能,证明了所提出的技术在最小化混合
激光。”激光物理字母9.1(2011):54。42。Sun,Zhipei等。“石墨烯模式锁定的超快激光器。”ACS Nano 4.2(2010):803-810。43。Lin,Jian等。 “来自商业聚合物的激光诱导的多孔石墨烯膜。” 自然Lin,Jian等。“来自商业聚合物的激光诱导的多孔石墨烯膜。”自然
摘要 本文介绍了 Triton 联合航空电子安全测试平台,该测试平台支持测试真实飞机电子系统的安全漏洞。由于现代飞机是复杂的系统,因此 Triton 测试平台允许实例化多个系统进行分析,以便观察多个飞机系统的总体行为并确定它们对飞行安全的潜在影响。我们描述了两种激发 Triton 测试平台设计的攻击场景:ACARS 消息欺骗和飞机系统的软件更新过程。该测试平台允许我们分析这两种场景,以确定其预期操作中的对抗性干扰是否会造成危害。本文不描述真实飞机系统中的任何漏洞;相反,它描述了 Triton 测试平台的设计和我们使用它的经验。Triton 测试平台的主要功能之一是能够根据特定实验或分析任务的需要混合模拟、仿真和物理电子系统。物理系统可以与模拟组件或其软件在模拟器中运行的系统交互。为了便于快速重新配置,Triton 还完全通过软件重新配置:组件之间的所有接线都是虚拟的,无需物理接触组件即可进行更改。两所大学使用 Triton 测试平台的原型来评估飞机系统的安全性。
分布式实时嵌入式系统的重新配置包括更改或修改子系统和/或子系统配置,以便更好地服务于某个目的 [1]。在航空电子系统中,模式变化自然用于适应不断变化的飞行操作条件。虽然模式是预先确定的,但它们可以通过重新配置来实现。重新配置可用于容忍可能导致某些关键功能因外部环境变化、系统用户请求或甚至应用程序中的定时事件而丢失的故障。L¨ofwenmark 等人的调查。[2] 表明容错架构仍然是一个重要的研究领域,将容错与时序保证相结合仍未解决,例如在多核架构存在的情况下。当系统组件发生故障时,可重构航空电子平台会将之前分配给故障组件的功能移动到另一个可用的系统组件中。这种重构方案除了提高可靠性之外,还可以在整个飞机生命周期的演进能力方面发挥作用。从 20 世纪末到现在的 21 世纪,商用飞机的使用寿命一直在增加 [3],现已达到稳定状态。此外,维护、维修和大修 (MRO) 市场预计将产生强劲的未来需求,因为世界各地的军事空军决定升级传统飞机而不是采购新平台 [4],从而延长了军用机队的使用寿命。例如,在巴西,最近的一次大修带来了
NAWCTSD 团队由 David Thomas、Darrell Conley、Bill Zeller、Khoa Vu 和 Christopher Freet 组成。 Thomas 先生是所有 MRTS 项目的首席项目经理。Conley 先生是 MRTS 3D VIRGINIA 鱼雷室和 MRTS 3D VIRGINIA EDG 的项目经理。Zeller 先生是 MRTS 3D VIRGINIA 鱼雷室的首席系统工程师,Vu 先生是 MRTS 3D VIRGINIA EDG 的首席系统工程师,Freet 先生是这两个项目的首席软件工程师。
域名系统 (DNS) 是互联网基础设施中最重要的组件之一。DNS 依赖于基于委托的架构,其中将名称解析为其 IP 地址需要解析负责这些名称的服务器的名称。与每个区域相关联的名称服务器之间存在的相互依赖关系的递归结构称为依赖关系图。系统管理员的运营决策对 DNS 的质量有着深远的影响。需要合理地制定这些决策,以在系统的可用性、安全性和弹性之间取得平衡。我们利用依赖关系图来识别、检测和分类操作不良气味。我们的方法使用由 DNS 操作模型定义的一致分类法和可重用词汇表,在高抽象级别上处理气味。该方法将用于构建诊断咨询工具,该工具将在域名投入生产之前检测可能降低其稳健性或安全态势的配置更改。
蓝海战略的首要原则是重新构建市场边界,以脱离竞争,开创蓝海。这一原则解决了许多公司面临的搜索风险。挑战在于从众多可能性中成功识别出具有商业吸引力的蓝海机会。这一挑战至关重要,因为管理者不能像赌徒一样,将战略押注于直觉或随机抽签。在进行研究时,我们试图发现是否存在系统性的模式来重新构建市场边界以开创蓝海。如果有的话,我们想知道这些模式是否适用于所有类型的行业部门——从消费品到工业产品、金融和服务、电信和 IT、制药和 B2B——还是仅限于特定行业?我们发现了打造蓝海的明确模式。具体而言,我们发现了重新构建市场边界的六种基本方法。我们称之为六条路径框架。这些路径在各个行业都有普遍适用性,它们引导企业进入