另外,请仔细阅读安全数据表上的警告和安全信息。本数据表包含安全、经济地操作本产品所需的技术信息。使用产品前请仔细阅读。紧急安全电话号码:美国 1 202 464 2554,欧洲 + 44 1235 239 670,亚洲 + 65 3158 1074,巴西 0800 707 7022 和 0800 172 020,墨西哥 01800 002 1400 和 (55) 5559 1588 免责声明:此处包含的所有声明、技术信息和建议均基于我们认为可靠的测试,但不保证其准确性或完整性。除非卖方和制造商官员签署的协议中另有规定,否则任何声明或建议均不构成陈述。不提供适销性保证、特定用途适用性保证或任何默示保证。以下保证代替此类保证和所有其他明示、默示或法定保证。保证产品在售出时不存在材料和工艺缺陷。卖方和制造商根据本保证的唯一义务是更换售出时不合规的任何产品。在任何情况下,制造商或卖方均不对因无法使用产品而导致的任何直接、间接、偶然或必然的损失、损害或费用负责。尽管有上述规定,如果产品是根据客户要求提供的,且该要求规定的操作参数超出上述范围,或者在超出上述参数的条件下使用产品,则客户通过接受或使用产品承担产品故障的所有风险以及在此类条件下使用产品可能导致的所有直接、间接、偶然和必然损害,并同意免除、赔偿、辩护并使 MacDermid, Incorporated 及其关联公司免受损害。任何产品使用建议或本文所含内容均不得解释为建议以侵犯任何专利或其他知识产权的方式使用任何产品,卖方和制造商对任何此类侵权不承担任何责任或义务。© 2019 MacDermid, Inc. 及其公司集团。保留所有权利。“(R)”和“TM”是 MacDermid, Inc. 及其公司集团在美国和/或其他国家/地区的注册商标或商标。
I. 序言 新的太空技术和轨道商业机会催生了全球航天产业的指数级增长和快速变化。火箭发射、卫星再入和上级火箭将气体和气溶胶排放到从地球表面到低地球轨道的每一层大气层中。这些排放可能会影响气候、臭氧水平、中层云量、地面天文学以及热层/电离层成分。航天产业的增长速度令人印象深刻:发射和再入质量通量最近每三年翻一番(Lawrence 等人,2022 年)。根据行业预测,到 2040 年,太空活动将继续增加至少一个数量级(Ambrosio 和 Linares,2024 年)。大型低地球轨道 (LEO) 卫星星座正在改变航天产业,因此到 2040 年,计划中的系统每年将需要发射和处置超过 10,000 颗卫星到大气层中。到 2040 年,以液化天然气 (LNG) 燃料发动机为动力的重型运载火箭预计将成为发射活动的主导 (Dominguez 等人,2024)。航天工业向大气排放的范围和性质正在急剧增长和变化 (Shutler 等人,2022)。发射和再入气溶胶排放量估计表明,到 2040 年,许多计划中的大型低地球轨道星座将需要将发射吨位从目前的 3,500 tyr -1 增加到 30,000 tyr -1 以上 (Shutler 等人,2022)。火箭燃烧排放量将与有效载荷同步增加。蒸发空间碎片和废火箭级的再入排放量将从目前的每年 1,000 吨增加到每年 30,000 吨以上 (Shulz 和 Glassmeier 2021)。到 2040 年,全球发射和再入大气层颗粒物(黑碳和金属氧化物)排放到平流层的总通量将与自然陨石背景通量相当。这些估计不包括不确定但可能很重要的发射要求,例如 MEO(中地球轨道)和 GEO(地球静止赤道轨道)等轨道上的新太空系统或积极的月球或火星探索计划。发射和再入大气层排放量的上升是在人们对航天排放的成分和化学成分存在广泛知识缺口的情况下发生的。人们对大型液化天然气火箭的排放和影响知之甚少。最近发现,重返大气层的太空碎片中的金属已经存在于构成天然平流层硫酸盐层的 10% 颗粒中,这强调了迫切需要了解未来重返大气层数量级的增加将如何影响大气(Murphy 等人,2023 年)。显然,总体上缺乏评估未来航天排放影响所需的科学和工程模型、工具和数据。知识差距:为了应对这些日益增长的担忧,2021 年,Surendra P. 博士美国宇航局艾姆斯研究中心的 Sharma 组织并领导了一个多机构工作组(航空航天公司的 Martin Ross 博士、NOAA/CSL(美国国家海洋和大气管理局/化学科学实验室)的 Karen Rosenlof 博士、科罗拉多大学 NOAA CSL 化学与气候过程组的 Chris Maloney 教授、哥伦比亚大学的 Kostas Tsigaridis 以及 GISS/NASA(戈达德空间研究中心/美国国家航空航天局)的 Gavin Schmidt 博士),在美国宇航局内部资金(地球科学部)的支持下,分析了预测发射和再入排放全球影响的模型的有效性和可信度,以及可用于验证这些模型的数据。该小组确定了对该现象的基本科学理解方面的关键差距,包括建模技术和
I.序言中的新空间技术和轨道上的商业机会导致了一个成倍增长且快速变化的全球空间行业。火箭发射并重新进入卫星和上层阶段,将气体和气溶胶散发到从地球表面到低地轨道的大气中的每一层。这些排放可能影响气候,臭氧水平,中层云彩,地面天文学和热层/电离层组成。空间行业的增长率令人印象深刻:发射和重新进入质量通量最近大约每三年增加一倍(Lawrence等,2022)。太空活动将继续增加到2040年的数量级(Ambrosio and Linares,2024年)。空间行业正在由大型低地轨道(LEO)卫星星座进行转换,因此到2040年计划的系统将需要每年推出10,000多颗卫星,并将其处置到大气中。由液态天然气(LNG)燃料发动机提供动力的重型升力火箭将在2040年到2040年(Dominguez等,2024)主导。空间行业排放到大气的范围和特征正在从根本上增长和变化(Shutler等,2022)。估计发射和再入气溶胶排放量表明,许多计划的大型LEO星座将需要从当前的3,500 Tyr -1增加到30,000 Tyr -1到2040年的发射吨位(Shutler等人,2022年)。火箭燃烧的排放将随着有效载荷而增加。努力。从汽化的空间碎片和用过的火箭阶段回归的排放量将从目前的每年1,000吨增加到每年30,000吨以上(Shulz and Glassmeier 2021)。到2040年,进入平流层的发射和再入颗粒物(黑碳和金属氧化物)排放的总全局通量将与自然的气象背景通量相媲美。这些估计值不包括新轨道中新空间系统的不确定但可能有重要的发射要求,例如Meo(中等地球轨道)和地理赤道轨道(地球赤道轨道),也可能是月球或火星探索的积极进程。面对太空飞行排放的构成和化学差距,发射和重新进入的排放率正在发生。对大型LNG火箭的排放和影响知之甚少。最近发现,构成天然平流层硫酸盐层的10%的颗粒中已经存在了重新进入空间碎屑的金属,这强调了迫切需要了解重新进入的即将到来的数量级如何影响大气(Murphy等人,2023年)。显而易见的是,总体上缺乏评估未来太空排放影响所需的科学和工程模型,工具和数据。小组确定了对现象的基本科学理解的关键差距,包括建模技术和知识差距:应对这些日益严重的关注,在2021年,Surendra P. Sharma博士,NASA AMES研究中心,组织和领导多机构工作组(Martin Ross博士,航空航天公司Martin Ross博士; Karen Rosenlof博士; Karen Rosenlof博士,NOAA/CSL,NOAA/CSL(NOAA/CSL)科罗拉多州哥伦比亚大学的Kostas Tsigaridis;
提案程序 1. UAAT 12 所会员院校现时各担任一学科之召集人。 2. 各学科召集机构向所有 UAAT 机构发出机会公告。 3. 各学科将有独立之提案征集,但总体方法类似。 4. 台大发出单一综合计划征集(新台币 480 万元);其余 11 所学科发出子计划征集(新台币 200 万元)。 5. 实施期间:2024/12/01 至 2025/11/30。 6. 申请时间: • 台大:2024/08/01 至 2024/09/20。 • 其他学科:2024/08/01 至 2024/09/01(各学科子计划各 1 项)。
和船舶停靠次数下降了 62.8%。我们重新利用了飞行厨房的容量来为食品服务和零售等细分市场的新客户提供服务,导致航空和非航空餐食净下降 47.1%。只有货运保持相对弹性,下降了 35.5%,这得益于对基本食品、医疗用品的需求和电子商务的增长。由于航空运输量的急剧下降,尽管来自新细分市场客户的收入有所增长,但集团收入较上年下降了 50%,至 9.7 亿新元。尽管政府的各种支持计划带来了有益的好处,但税后净利润仍降至 7,890 万新元的净亏损。EBITDA 下降了 79.7%,但仍为 7,230 万新元。股本回报率从去年的 10.3% 降至负 5%。尽管 2020-21 财年的情况充满挑战,但 SATS 取得了强劲的
描述FGF-8属于成纤维细胞生长因子(FGF)家族,并且在细胞生长,胚胎发生和肿瘤发生中起重要作用。在人(A,B,E,F)中FGF-8的四种亚型和通过mRNA的替代剪接产生的小鼠(A-H)中的八种同工型。比较人和小鼠,FGF-8A和FGF-8B显示出相同的序列同源性。FGF-8B是主要形式,并与FGF-8A共表达。同工型在胚胎发生过程中具有不同的生物学功能。在产前阶段,FGF-8的正常发育需要各种器官(包括四肢和中枢神经系统)。FGF-8A和8B蛋白的明显导致大脑发育中的命运确定失调。此外,首先将FGF-8从SC-3小鼠乳腺癌细胞克隆,并被发现是响应雄激素刺激而诱导的。同工型FGF-8B对FGF受体具有最高的亲和力,比FGF-8A阐明了更强的转化能力。FGF-8B在人前列腺和乳腺癌标本和细胞系中检测到。FGF-8F与食管癌的预后有关。FGF-8E突变与促性腺激素释放激素(GNRH)的缺乏有关。
在建工程 37.36% 主要由于工程项目及费用增加所致 短期借款 -36.03% 减少主要由于偿还短期借款所致 衍生金融负债 -100.00% 主要由于金融工具到期及交付所致 应付职工薪酬 -49.50% 减少主要由于本期支付年终绩效奖金所致 应交税费 86.66% 主要由于企业所得税、增值税增加所致 一年内到期的非流动负债 266.70% 主要由于一年内到期的长期借款增加所致 预计负债 61.81% 主要由于预提产品质量保证金增加所致 其他非流动负债 -41.69% 主要由于收购工业园预收款项减少所致 管理费用 35.00% 主要由于与职工持股相关的股份支付费用增加所致股权计划 财务费用 98.22% 主要受汇兑损益的影响 投资收益 -91.77% 主要受理财产品收益、权益法核算的长期股权投资收益减少的影响 公允价值变动收益 -87.44% 主要受股票等金融资产公允价值变动减少的影响 资产处置收益 3539.74% 主要受收购工业园处置损益增加的影响 营业外支出 39.53% 主要受违约金、资产报废费用增加的影响 筹资活动产生的现金流量净额 -975.81% 主要受偿债务增加的影响