复合材料是一种先进的材料,经过几十年的发展,在航空航天、船舶、汽车和体育用品行业中得到了广泛的应用。虽然复合材料具有高强度重量比和刚度重量比等优点,但它们比大多数金属和塑料复杂得多。本课程介绍复合材料,适合对复合材料背景了解不多或没有背景的用户。学员将了解什么是复合材料以及复合材料的优点/缺点,并概述复合材料的设计、分析和制造方法。最后,简要讨论了具有复合材料功能的 Autodesk® 产品。
•较低的维护•较低的通风•节省空间(理想的安装空间有限)•重量比VLA电池轻 - 更容易/更简单的运输和安装•更大的能量密度•可靠且更长的服务寿命
“空中优势新型能源和推进系统”(NEUMANN)项目旨在解决高效动力装置所需的推进和能源系统技术,能够同时提供更高的发电量和推力重量比,这对于满足下一代战斗机的任务要求和作战需要是必不可少的。
TB20,TB30和TB40的重量比铅酸和NICAD解决方案低60%,并且比任何其他电池都能提供每磅更多的放大器小时。这转化为发动机启动的更多功能,更多的紧急和备用功率能量,超快速充电以及更长的寿命。
目的:第一个目标是摆脱废物并减少环境污染,另一个目标是研究这些纤维对聚酯性能(复合材料的弯曲和拉伸试验阻力)的影响并将其用于应用。此外,还研究了湿度环境对复合材料性能的影响。设计/方法/方法:使用天然纤维,即被视为废物的蛋壳和锯末与聚酯。制备了几个不同重量百分比(30%和40%)的样品,研究了它们的机械性能,并将其浸泡在水中15天。并研究水对这些性能的影响。研究发现,可以将这些纤维(废物)与聚酯一起使用并从中受益。研究发现,当向聚酯中添加纤维时,拉伸强度会降低,但弯曲会增加强度。最后,研究发现,当将样品浸入水中时,材料会变弱,其机械性能会下降。发现:可以注意到,添加 40% 和 30% 的天然纤维可以改善聚酯在弯曲试验中的机械性能,其中弯曲试验随着纤维体积分数的增加而增加。可以注意到,添加 40% 和 30% 的天然纤维会降低聚酯在拉伸试验中的机械性能(拉伸强度)。当用水处理天然复合材料 15 天时,水会降低弯曲和拉伸试验的机械性能。研究的局限性/含义:通过工作发现本研究的局限性之一是,增加添加到聚酯中的纤维的重量比会导致聚酯失效,因此我们建议使用较低重量比的纤维。实际意义:通过工作发现本研究的局限性之一是,增加添加到聚酯中的纤维的重量比会导致聚酯失效,因此我们建议使用较低重量比的纤维。原创性/价值:这项研究的原创价值在于利用被视为废物的纤维,重新利用它们,并利用在某些不需要高机械性能复合材料的应用中。关键词:聚酯树脂、复合天然材料、拉伸和弯曲试验对本文的引用应以以下方式给出:AA Nayeeif、ZK Hamdan、ZW Metteb、FA Abdulla、NA Jebur,天然填料基复合材料,材料科学与工程档案 116/1 (2022) 5-13。DOI:https://doi.org/10.5604/01.3001.0016.0972
生物相容性材料是体内保存的天然或人造物质,用于将活细胞转变为功能器官。骨组织和生物相容性正成为再生骨的替代方法,因为它比自体移植和同种异体移植具有一些明显的优势。本研究旨在制造一种可用作骨替代品的新型多孔支架 Ti-Nb-Zr-Sn 合金。选择不同重量比的 Ti-Nb-Sn-Zr,并使用粉末冶金法合成。加入锆 (Zr) 以增强生物性能。Ti、Nb 与 Zr 和 Sn 元素因其与人体具有出色的生物相容性而被利用。通过增加Zr和Nb的重量比,Ti-35Nb-7Zr-4Sn合金具有1042至1603 MPa之间的高抗拉强度。此外,35%Nb/7%Zr与4%Sn复合材料表现出更高的硬度,这有利于在汽车应用中模拟骨组织和压铸配件。进行疲劳和磨损分析有助于我们了解Ti-Nb-Zr-Sn合金的行为。关键词:铌合金;生物相容性;力学性能;形态特征;骨科应用
本文概述了知识型系统 (KBS) 在轻型飞机金属结构设计材料选择决策方法中的应用。飞机整体重量的减轻意味着燃料消耗大幅减少,效率提高。解决这个问题的部分方法是找到一种方法来减轻飞机金属结构的总重量。本文介绍了两种不同的多标准决策 (MCDM) 方法,并举例介绍了一组适合结构设计的入围材料。预定义的约束值(主要是机械性能)被用作满足设计要求的相关属性。目前,高强度重量比的铝合金在大多数轻型飞机零件制造中都是首屈一指的。使用这些方法研究了重量更轻且具有令人印象深刻的强度重量比的镁合金,作为结构中使用铝合金的替代品。Ashby 的材料选择方法被概括,并且材料根据单个材料指数值进行排名。最后,根据使用这些方法获得的结果对材料进行排名,并与使用广义 Ashby 材料选择方法获得的结果进行比较。讨论了单个材料排名结果之间的任何差异。
F414 增强型发动机 英制 SI 推力等级 26,000 磅 116 千牛 长度 154 英寸 391 厘米 气流 187 磅/秒 85 千克/秒 最大直径 35 英寸 89 厘米 进气口直径 31 英寸 79 厘米 压力比 30:1 30:1 推力重量比 9:01 9:01
本文概述了知识型系统 (KBS) 在轻型飞机金属结构设计材料选择决策方法中的应用。飞机整体重量的减轻意味着燃料消耗大幅减少,效率提高。解决这个问题的部分方法是找到一种方法来减轻飞机金属结构的总重量。本文介绍了两种不同的多标准决策 (MCDM) 方法,并举例介绍了一组适合结构设计的入围材料。预定义的约束值(主要是机械性能)被用作满足设计要求的相关属性。目前,高强度重量比的铝合金在大多数轻型飞机零件制造中都是首屈一指的。使用这些方法研究了重量更轻且具有令人印象深刻的强度重量比的镁合金,作为结构中使用铝合金的替代品。Ashby 的材料选择方法是通用的,材料根据单个材料指数值进行排名。最后,根据使用这些方法获得的结果对材料进行排名,并与使用广义 Ashby 的材料选择方法获得的结果进行比较。讨论了单个材料排名结果之间的任何差异。