β -arrestin在G蛋白 - 耦合受体(GPCR)内在化,传统和信号传导中起关键作用。β-抑制蛋白是否独立于G蛋白 - 介导的信号传导尚未完全阐明。使用基因组编辑的研究的研究表明,G蛋白对于通过GPCRS的促丝分裂原激活蛋白激酶激活至关重要,而β-抑制蛋白在信号分区 - 室化中起更为重要的作用。然而,在没有G蛋白的情况下,GPCR可能不会激活β -arrestin,从而限制了将G蛋白与β -arrestin介导的信号事件区分开的能力。我们使用β2-肾上腺素能受体(β2AR)及其在人类胚胎肾脏中表达的β2AR-C尾突变体293个细胞野生型或CRISPR - CAS9基因 - cas9基因编辑,编辑为GαS,β-arrestin1/2,或GPCR ki-Nases 2/3/5/6组合的群体结合量的cas9基因 - 控制基因表达中的暂停。我们发现,β2AR和β-甲素构象变化,β-甲素的募集和受体内在化不需要GαS,但是GαS决定了参与β-arrestin募集的GPCR激酶。通过RNA-Seq分析,我们发现蛋白激酶A和有丝分裂原活化的蛋白激酶基因信号通过刺激野生型和β2AR在野生型和β-arrestin1/2-kO细胞中激活,但在GαS-KO细胞中不存在。 这些结果通过在相应的KO细胞中表达gαs并在野生型细胞中沉降β-阻滞蛋白来验证。 这些发现扩展到表达内源性β2AR水平的细胞系统。通过RNA-Seq分析,我们发现蛋白激酶A和有丝分裂原活化的蛋白激酶基因信号通过刺激野生型和β2AR在野生型和β-arrestin1/2-kO细胞中激活,但在GαS-KO细胞中不存在。这些结果通过在相应的KO细胞中表达gαs并在野生型细胞中沉降β-阻滞蛋白来验证。这些发现扩展到表达内源性β2AR水平的细胞系统。总体而言,我们的结果支持GS对于β2AR促进的蛋白激酶A和有丝分裂原激活的蛋白激酶基因表达特征至关重要,而β-arrestins启动了调节GαSS驱动核转录活性的信号传导事件。
和缺失分别以+和-表示。i 使用酶StuI对T0纯合突变体进行限制性消化筛选。野生型Solanum etuberosum产生消化的PCR带(蓝色箭头),而突变植物产生对StuI消化有抗性的PCR带。J、k CR-SeSP5G突变体在短日照条件下开花,而野生型在短日照条件下不能开花。比例尺:1厘米;NF,无花。
补充图 S5。olslc38a4 (SAT) 的消除对青鳉幼虫表型、上皮 Na + 通量和蛋白质表达的影响。 (A),青鳉 Sat 与商用抗 SLC38A4 抗体免疫原肽(针对人类 SLC38A4 的合成肽;序列同源性:74%;ab58785;Abcam Cambridge,英国)的推断序列比对。Western blot 分析 SAT 消除对 Sat 变体蛋白质表达的影响。分别应用了 6 dpf 青鳉幼虫匀浆(从 FW 中的野生型、20‰ SW 中的野生型和 20‰ SW 中的 Sat 变体中收集),并表明商用抗 SLC38A4 抗体可以检测到来自不同青鳉幼虫样本的蛋白质,预期分子量大小约为 56 KDa。 (B) 野生型 (Wt) 和 1 ng SAT MO 注射青鳉胚胎在 20‰ SW 条件下的光学显微镜图像。 (C) 淡水 (FW) 环境下,与野生型和假对照青鳉幼体相比,SAT MO 注射对 6 dpf 青鳉幼体 Na + 通量的影响。值以平均值 ± SD 表示,并使用 Student's t 检验进行比较。当 p < 0.05 时,认为存在显著差异。
摘要 CRISPR-Cas9 基因组工程彻底改变了高通量功能基因组筛选。然而,最近的研究引起了人们对使用 TP53 野生型人类细胞进行 CRISPR-Cas9 筛选的性能的担忧,因为 p53 介导的 DNA 损伤反应 (DDR) 限制了生成可行编辑细胞的效率。为了直接评估细胞 p53 状态对 CRISPR-Cas9 筛选性能的影响,我们使用针对 852 个 DDR 相关基因的聚焦双向导 RNA 文库在野生型和 TP53 敲除人类视网膜色素上皮细胞中进行了并行 CRISPR-Cas9 筛选。我们的工作表明,尽管功能性 p53 状态对显著耗竭基因的识别有负面影响,但最佳筛选设计仍然可以实现强大的筛选性能。通过分析我们自己的和已发表的筛选数据,我们强调了在野生型和 p53 缺陷细胞中成功筛选的关键因素。
摘要 Wnt 信号在发育、体内平衡和肿瘤发生中起着重要作用。在结直肠癌和肝细胞癌中发现了激活 Wnt 信号的 β -catenin 突变。然而,β -catenin 野生型和突变型的动态尚未完全了解。在这里,我们在结直肠癌细胞系中对内源性 β -catenin 的荧光标记等位基因进行了基因组工程改造。野生型和致癌突变等位基因用不同的荧光蛋白标记,从而能够在同一细胞中分析这两种变体。我们使用免疫沉淀、免疫荧光和荧光相关光谱法分析了两种 β -catenin 等位基因的特性,揭示了截然不同的生物物理特性。此外,通过用 GSK3 β 抑制剂或截短 APC 突变治疗激活 Wnt 信号,可以调节野生型等位基因,使其模仿突变 β -catenin 等位基因的特性。一步标记策略展示了如何利用基因组工程对不同的遗传变异进行并行功能分析。
从表型上看,编辑植物的营养生长与野生型相似。所选 8 个品系的果实质量参数显示,重量、长度、颜色和硬度均有所变化,具体取决于品系,其中大多数品系的长宽比低于野生型,与对照相比,转基因果实的伸长率较低且更方。此外,几乎所有编辑品系的果实硬度均显著增加,FaPG1 编辑程度与收获时的果实硬度之间存在明显的正相关关系。
运行标题:破坏IDH1将癌细胞敏感到化学疗法的关键词:胰腺癌,IDH1,Ivosidenib,靶向治疗化疗,化学疗法,联合治疗缩写:PDAC,PDAC,胰腺导管腺癌; IDH1,异位酸脱氢酶1; 5-FU,5-氟尿嘧啶; αkg,α-酮戊二酸; TCGA,癌症基因组图集; TCA,三羧酸周期; ROS,活性氧。通讯作者:乔丹·M·温特(Jordan M.
晚期胃肠道间质瘤 (GIST) 的一线治疗标准是伊马替尼,每日以标准剂量给药,直至肿瘤进展。伊马替尼耐药性通常是通过肿瘤 DNA 中基因突变的克隆选择而发生的,增加伊马替尼剂量已被证明可以有效克服伊马替尼耐药性。野生型 GIST 不显示 KIT 或血小板衍生生长因子受体 α (PDGFRA) 突变,通常对伊马替尼不敏感,并且在治疗过程中往往会迅速复发。我们在此报告一名 53 岁男性胃 GIST 患者的病例,该患者主要对伊马替尼没有反应,尽管增加了伊马替尼剂量,但仍导致患者死亡。通过使用深度下一代测序条形码感知方法,我们分析了患者 cfDNA 中一组可操作的癌症相关基因,以研究导致伊马替尼耐药的体细胞变化。我们在两个系列循环肿瘤 DNA (ctDNA) 样本中发现,位于剪接受体位点并导致蛋白质功能丧失的从未描述过的 TP53 突变 (c.560-7_560-2delCTCTTAinsT) 的等位基因频率急剧增加。通过数字液滴 PCR 在原发性肿瘤中以亚克隆频率 (0.1%) 回顾性地鉴定了相同的 TP53 突变。在转移性肝病变中检测到的突变等位基因频率非常高 (99%),表明在肿瘤进展过程中突变的快速克隆选择。稳态下的伊马替尼血浆浓度高于文献报道的最低有效浓度阈值 760 ng/ml。计算机模拟预测新生 TP53 (c.560-7_560-2delCTCTTAinsT) 突变与异常 RNA 剪接和侵袭性表型有关,这可能导致尽管使用了
1,天津医科大学癌症研究所和医院,国家临床研究中心,癌症预防和治疗的主要实验室,天津癌癌症癌症临床研究中心,天津消化癌癌症临床研究中心,消化癌症癌症临床研究中心,中国蒂安吉·伊斯基(Tianjin)临床研究中心; 2中国富士科医学院联合医院,富州350001; 3中国富士省癌症医院350014; 4癌症中心,吉林大学第一届医院,中国长春130021; 5中国南部大学武癌医院医学院医学肿瘤学胃肠病学和泌尿外科医院,中国南部北大学,中国410013; 6中央南大学第三木安吉亚医院肿瘤学系,中国410013; 7胃肠道肿瘤学系,致癌与转化研究的主要实验室(教育部/北京部),北京大学癌症医院和研究所,中国北京100142; 8北京工程研究中心,中国北京100176,Sinocelltech Ltd.; 9中国医学科学院北京北京100010北京北京大学医学院医院癌症中心1,天津医科大学癌症研究所和医院,国家临床研究中心,癌症预防和治疗的主要实验室,天津癌癌症癌症临床研究中心,天津消化癌癌症临床研究中心,消化癌症癌症临床研究中心,中国蒂安吉·伊斯基(Tianjin)临床研究中心; 2中国富士科医学院联合医院,富州350001; 3中国富士省癌症医院350014; 4癌症中心,吉林大学第一届医院,中国长春130021; 5中国南部大学武癌医院医学院医学肿瘤学胃肠病学和泌尿外科医院,中国南部北大学,中国410013; 6中央南大学第三木安吉亚医院肿瘤学系,中国410013; 7胃肠道肿瘤学系,致癌与转化研究的主要实验室(教育部/北京部),北京大学癌症医院和研究所,中国北京100142; 8北京工程研究中心,中国北京100176,Sinocelltech Ltd.; 9中国医学科学院北京北京100010北京北京大学医学院医院癌症中心
急性髓系白血病 (AML) 是一种典型的致死性分子异质性疾病,几乎没有广谱治疗靶点。不同寻常的是,大多数 AML 保留了野生型 TP53,它编码促凋亡的肿瘤抑制因子 p53。激活野生型 p53 的 MDM2 抑制剂 (MDM2i) 和靶向 BET 家族共激活因子 BRD4 的 BET 抑制剂 (BETi) 均表现出令人鼓舞的临床前活性,但作为单一药物的临床活性有限。在这里,我们报告了 MDM2i 和 BETi 的组合对 AML 细胞系、原代人类母细胞和小鼠模型的增强毒性,这是因为 BETi 能够从 p53 靶基因中驱逐出意想不到的抑制形式的 BRD4,从而增强 MDM2i 诱导的 p53 激活。这些结果表明,野生型 TP53 和 BRD4 的转录抑制功能共同代表了 AML 潜在的广谱合成治疗脆弱性。