摘要:随着纳米级半导体器件尺寸的不断缩小,从复杂的物理方程中获取表面势的解析解变得越来越困难,而这正是 MOSFET 紧凑模型的根本目的。在本文中,我们提出了一个通用框架,利用深度神经网络的通用近似能力,自动推导 MOSFET 表面势的解析解。我们的框架结合了物理关系神经网络 (PRNN),可以从通用数值模拟器并行学习处理复杂的数学物理方程,然后将模拟数据中的“知识”灌输到神经网络,从而生成器件参数和表面势之间的精确闭式映射。本质上,表面势能够反映二维 (2D) 泊松方程的数值解,超越了传统一维泊松方程解的限制,从而更好地说明缩放器件的物理特性。我们在推导 MOSFET 的解析表面电位以及将导出的电位函数应用于 130 nm MOSFET 紧凑模型的构建和电路模拟方面取得了令人鼓舞的结果。这种高效框架能够准确预测器件性能,展现了其在器件优化和电路设计方面的潜力。
锂离子电池(LiBs 1 )被广泛应用于各个领域,但其原材料依赖于稀土金属,而稀土金属的产地在世界各地分布不均。近年来,电动汽车销量的增长和乌克兰危机导致锂等锂离子电池主要原材料的价格飞涨,降低材料采购风险在下一代电池的开发中显得至关重要。自 1980 年代以来,钠离子电池(以下称为 NiBs 2 )的研发就一直在进行,但由于 NiB 在能量密度 3 和其他性能特性方面不如 LiB,因此并未得到广泛应用。但是,随着上述市场环境的变化,NiB 作为一种有前途的下一代电池候选材料开始受到关注,因为其主要原材料钠在地壳中的储量是锂的 1,000 倍,而且不会像锂那样在特定国家和地区分布不均。 BNEF 4 在 2021 年底发布的《全球储能展望》中指出,到 2030 年,NiB 可能会发挥重要作用。
摘要:随着立方体卫星执行复杂和先进任务的能力不断提高,它们正被考虑用于诸如星座之类的任务,这些任务需要很高的开发效率。从卫星接口的角度来看,通过实施灵活的模块化结构平台,可以最大限度地提高生产率,从而在集成和测试阶段轻松实现可重构性。因此,立方体卫星的结构设计在促进卫星集成过程中起着至关重要的作用。在大多数情况下,在主负载支撑结构和内部卫星子组件之间实施的机械接口通过增加或减少复杂性来影响卫星集成的速度和效率。大多数立方体卫星结构设计使用堆叠技术,使用堆叠杆/螺钉将 PCB 安装到主结构上。因此,内部子系统是相互连接的。观察到这种传统的接口方法增加了结构部件的数量,同时增加了集成过程中的复杂性。在这项研究中,基于插槽概念开发了灵活的 3U 和 1U 立方体卫星平台。这种创新的安装设计提供了一种将 PCB 安装到插槽中的简单方法。评估并验证了该概念在批量生产应用中的可行性。进行了计数和复杂性分析,以评估所提出的设计与传统类型的结构接口方法。评估表明,这一新概念显著提高了批量生产过程的效率。
规模化量产的Eagle组件可保证在业界严苛抗PID(电势诱导衰减)测试条件 (85℃/85% RH,96小时)下,PID现象造成的衰减几率降至最小。
本新闻稿包含某些前瞻性陈述以及管理层的目标、战略、信念和意图。本文所载所有非明显历史性的信息均可能构成前瞻性信息。一般而言,此类前瞻性信息可通过前瞻性术语的使用来识别,例如“计划”、“预期”或“不预期”、“预计”、“预算”、“安排”、“估计”、“预测”、“打算”、“预期”或“不预期”或“相信”,或此类词语和短语的变体,或表明某些行动、事件或结果“可能”、“可能”、“将”、“可能”或“将被采取”、“发生”或“实现”。前瞻性信息受已知和未知风险、不确定性和其他因素的影响,这些因素可能导致本公司的实际结果、活动水平、业绩或成就与此类前瞻性信息表达或暗示的结果、活动水平、业绩或成就存在重大差异,包括但不限于:波动的股票价格;全球市场和经济总体状况;减记和减值的可能性;与先进技术和电池相关技术研发相关的风险;与先进技术和电池相关技术研发相关的风险;
密歇根大学提议系统地评估氘化过程中过量产热的说法,并将其与核反应和化学反应产物联系起来。该团队计划结合基于闪烁的中子和伽马射线探测器、质谱仪、能够对产热进行微瓦分辨率测量的量热仪以及从头计算方法。拟议的研究将通过实验和理论探索过量产热和 LENR 的起源和机制。
T-50项目产值达2亿美元,同比增长27.8%,这得益于TA-50项目第二次量产以及对印尼等国的强劲出口。与此同时,继2020年底达成第四笔量产协议后,KUH项目产值在年内增长了3.7%,达到8.6亿美元。KF-21项目产值达到8.1亿美元,比去年原型机下线时增长了13.8%。
量产中期后,我们将考虑根据量产初期的成本信息(公开数据)提前确定采购价格,从而降低采购成本,同时吸引企业的激励→26 2017年,将开展研究工作,在计算设备等计划价格时,采用新的统计处理方法,有效利用设备等相关成本数据。
TCM 善于充分利用多年来在赛车开发中培养的减重设计和技术以及碳纤维增强塑料成型和加工技术。它极大地提高了汽车、摩托车、飞机、航空航天、无人机、铁路、工业设备、医疗设备和体育等各个行业中使用的各种零件和结构的性能。这归功于其在精密复杂零件和大型结构的设计、分析、试制和量产方面的专业知识。其产品在日本开发、设计和试制,并在其位于泰国的子公司 Carbon Magic Thailand 采用优化的流程和尖端设备进行量产。