DEMMIN – 使用建模和遥感数据演示生物量潜力评估的试验场 Erik Borg 博士 *) 、Holger Maass *) 、Edgar Zabel **) *) 德国航空航天中心 (DLR)、德国遥感数据中心 (DFD) **) 兴趣小组 Demmin Kalkhorstweg 53 D- 17235 Neustrelitz 与会议 2 相关 摘要:通过“全球环境和安全监测 (GMES)”倡议,欧盟 (EU) 和欧洲航天局 (ESA) 制定了一项雄心勃勃的计划,利用空间遥感技术以及其他数据源和监测系统为欧洲市场提供各种环境、经济和安全方面的创新服务。为了实现这一目标,必须实施自动化的实时和近实时基础设施,以便自动处理遥感数据。空间段和地面段的必要开发和实施已经在推进中。将开发用于获取增值产品的自动化处理链和处理器,特别是开发用于校准和验证遥感任务的测试站点。海报介绍了 DLR 测试站点 DEMMIN(持久环境多学科监测信息网络),它是校准和验证生物质和生物能源增值数据产品、区域规模生物质模型(如 BETHY/DLR)的先决条件,并展示了在实践中使用遥感数据和产品获取生物质潜力的可能性。考虑到这一背景,该演示文稿介绍了 DLR 的测试站点 DEMMIN,包括其特定的区域特征、现场测量仪器和现有数据库。测试站点 DEMMIN 是一个密集使用的农业区,位于德国东北部梅克伦堡-前波美拉尼亚州德明镇附近(距柏林以北约 180 公里)。自 1999 年以来,DLR 与 Demmin 利益集团 (IG Demmin) 一直保持着密切的合作。DEMMIN 的范围从北纬 54°2 ′ 54.29 ″、东经 12°52 ′ 17.98 ″ 到北纬 53°45 ′ 40.42 ″、东经 13°27 ′ 49.45 ″。IG Demmin 由 5 家农业有限责任公司组成,占地约 25,000 公顷农田。该地貌属于上一次更新世 (Pommersches stadium) 形成的北德低地。其特点是冰川河流沉积物和冰川湖沼沉积物以及反映在略微起伏的地貌中的冰碛。土壤基质以壤土和沙壤土为主,与纯沙斑或粘土区域交替出现。试验场的海拔高度约为 50 米,试验场东南部托伦塞河沿岸有一些坡度较大的山坡(12°)。年平均气温为 7.6 至 8.2°C。降水量约为 500 至 650 毫米。由于微地形,气候条件在局部范围内可能存在很大差异。该地区的田地面积很大,平均为 80 - 100 公顷。主要种植的作物是冬季作物,覆盖该地区近 60% 的田地。玉米、甜菜和土豆约占 13%。由于 DLR 与 IG Demmin 的合作,科学家们得到了农民的支持,并为他们的调查提供了重要信息。例如,数字准静态数据(如土壤图、地块图)或数字动态数据(如产量图和应用图)。除了数据库之外,DEMMIN 还实现了农业气象网络,它可以自动测量影响成像过程的所有农业气象参数,同时进行空间或机载遥感。
三丰的技术实现了绝对位置法(绝对法)。使用这种方法,您不必在关闭并重新打开系统后将其复位为零。每次都会读取刻度盘上记录的位置信息。有以下三种绝对编码器可供选择:静电电容型、电磁感应型以及静电电容和光学方法相结合的型。这些编码器作为长度测量系统广泛应用于各种测量仪器中,可以生成高度可靠的测量数据。优点:1. 即使滑块或主轴移动速度极快,也不会发生计数错误。2. 关闭系统后重新打开系统时,您不必将系统复位为零*1。3. 由于这种类型的编码器可以用比增量编码器更少的功率驱动,因此在正常使用情况下,电池寿命延长至约 3.5 年(连续运行 20,000 小时)*2。*1:除非取出电池。*2:对于 ABSOLUTE Digimatic 卡尺。 • 电磁感应式绝对编码器在日本、美国、英国、德国、法国、印度和中国均受专利保护。 • 结合静电电容和光学方法的绝对编码器在日本、美国、英国、德国、瑞士、瑞典和中国均受专利保护。
DAP 是入射剂量(空气比释动能)与光束面积相乘的结果。它可以通过平面电离室测量,该电离室直接安装在 X 射线焦点和患者表面之间的光束外壳上。根据平方反比定律,DAP 与焦点和患者之间的距离无关。这种关系表明,将辐射源和测量室之间的距离加倍,辐射面积将增加四倍,而剂量(空气比释动能)同时减少四倍。两种效应相互抵消。因此,剂量面积乘积与距离无关,它以优雅的方式确定检查期间所有可变参数,如管电压、管电流、过滤、辐照时间和场大小。
可调(2 个主)空气系统的进步 – Mahr Federal 采用了可调放大倍率背压系统,并对其进行了改造,使其适用于精密差压计和空气/电子传感器。Universal Dimensionair 的放大倍率是通过将压力与工具和参考通道之间的精确平衡相匹配来控制的。第二个旋钮通过改变参考通道中的压力来调整零位。该系统能够对任何气动测量系统进行广泛的放大倍率调整。它可容纳几乎任何尺寸的喷嘴,大到 0.080 英寸。或小到 0.020 英寸。两个设置主控 - 最小值和最大值 - 用于校准系统,定义和显示特定公差范围的两端。借助现代电子系统(例如柱式气动量具),此过程可以实现自动化,以便量具引导操作员完成掌握程序。归零和放大倍数调整自动完成 - 无需操作员干预。
相对湿度 (rh) 的测量对整个行业都有影响。准确测定 rh 的传统方法是使用干湿球湿度计或使用单独的温度测量进行露点测量,然后转换为 rho。用于测量 rh 的电子设备的发展现在已经达到了这样的水平,其不确定性与其他方法相比更为有利。随着最近英国湿度校准设施中相对湿度生成设施的投入使用,现在可以获得相对湿度测量的直接可追溯性来源,并且可以检查这些设备的声明。这项工作的目的是识别和检查市售的相对湿度测量仪器,以确定其中哪一种(如果有的话)适合用作最高精度的传递标准。该项目是作为 DTI 国家测量系统热计划(1998 年至 2001 年)项目 4.2(未来湿度标准)的一部分开展的。