资金信息神经创伤慢性影响联盟,资助/奖励编号:PT108802-SC104835;国防和退伍军人脑损伤中心;荷兰国防部;汉森-托雷尔研究奖学金;医学研究与物资司令部;国家神经疾病和中风研究所,资助/奖励编号:R01NS086885,R01NS100973;国立卫生研究院,资助/奖励编号:U54 EB020403;美国国防部,资助/奖励编号:W81XWH-18-1-0413,W81XWH08-2-0159;美国退伍军人事务部,拨款/奖励编号:I01CX001820、I01CX002293、I01RX002174、I21RX001608、IK2RX002922-01A1
在过去的十年中,对人工智能(AI)的会计专业和教育的研究显着增加,但是AI带来的机遇和挑战仍在辩论中。本研究旨在通过综合现有研究来全面概述文献。使用文献计量技术和内容分析,本研究对相关文献进行了全面的综述。利用了2007年至2024年的科学数据库的书目数据,并分析了48项学术研究。vosviewer用于引用和网络分析,而Excel用于内容分析。该研究通过书目分析确定了有影响力的作者,期刊,国家,趋势文章和重要的网络合作。该研究最值得注意的发现之一是对学术研究中的四个主要会计师事务所的大量参考。内容分析表明,深度和特定研究的稀缺性。可以得出结论,与AI有关的研究和学术应用仍处于新兴阶段,强调了对未来研究中涉及监管机构,学术界,公司和从业人员的全面研究的需求。此外,该研究发现了证据表明,学术界采用AI应用和教育方面的步伐缓慢。
本课程涵盖了现代多元数据分析和统计学习的方法,包括其理论基础和实际应用。主题包括主要组成分析和其他缩小技术,分类(判别分析,最近的邻居分类器,逻辑回归,支持向量机器,决策树,集合方法,神经网络),聚类(K-Means,k-Means,基于层次的聚类,基于模型的方法,基于模型的方法,光谱群 - 倾向),图形的模型和某些基础模型和一些基础。目标是了解什么
战斗机就是这样一个例子,为了完成战斗任务,飞行员在体力(由于 G 机动)和认知(处理多个传感器、感知、处理和多任务,包括通信和操作武器)方面都承受着巨大的负担。需要分析这种认知需求,以了解战斗机飞行员的工作负荷。本研究的目的是分析在不同飞行负荷条件下,在逼真的高保真飞行模拟器环境中战斗机飞行员的动态工作负荷。各种工作负荷条件包括 (a) 正常能见度、(b) 低能见度、(c) 正常能见度和次要任务,以及 (d) 低能见度和次要任务。虽然飞行员的飞行表现得分不错,但生理指标如心率变异性 (HRV) 特征和主观评估 (NASA-TLX) 成分在任务之间具有统计学意义 (p<0.05)。在所有任务负载条件下,HRV 特征(例如 SD2、SDNN、VLF 和总功率)都很重要。LFnu 和 HFnu 特征能够区分低能见度和次要认知任务的影响,在本研究中,次要认知任务被强加为增加的任务。该结果有助于了解飞行员在每个飞行阶段的任务和表现以及他们在动态工作量期间的认知需求,这可以在模拟器和实际飞行条件下以最佳方式协助飞行员的训练计划。
人因与工效学学科研究人、机器、环境和技术之间的相互作用,同时考虑人的能力和局限性,以确保安全和令人满意的工作环境[1-4]。传统的技术和方法采用各种定性方法[5-7],以主观的方式评估工作任务。这些方法不能充分分析现代技术在认知、感知和身体方面之间的复杂相互作用[3,8-11],也不能让我们对人类思维和技术之间的复杂关系进行建模和量化[11]。人工智能、自主系统和数字化制造(即工业4.0)等现代工业自动化方面的最新进展使得当今的人类操作员需要与复杂且动态变化的技术环境进行协作,而这些环境需要高水平的认知和感知[12,13]。因此,我们需要通过考虑人脑的工作情况来更深入地了解人的表现。Parasuraman 等人首次提出了神经工效学这一开创性概念[14, 15]。这项关于大脑和工作行为的研究应用神经科学的方法和工具来研究大脑在日常生活活动中对人的表现的影响[16]。神经工效学研究旨在扩展我们对认知和运动功能背后神经机制的理解,重点是现实世界的应用。认知工效学侧重于感知、信息处理和决策等心理过程,可应用于不动的参与者[3, 11, 16, 17]。人脑是协调所有身体功能并控制身体各个方面的器官,由超过 1000 亿个神经元组成[18]。神经元之间的通讯是通过电信号进行的,电信号的流动会产生电流,进而产生称为“脑信号”的波形。文献中对脑信号有不同的分类[19、20],但最广泛使用的分类法是基于以赫兹 (Hz) 为单位测量的脑电波频率,如下所示:delta(δ:0.5 至 4 Hz)、theta(θ:4 至 8 Hz)、alpha(α:8 至 13 Hz)、beta(β:13 至 30 Hz)和 gamma(γ:30 至 150 Hz)[21]。不同的脑功能与不同的脑叶相关。例如,额叶与计划、自主运动、情绪、推理和
5th floor of the Fusion Building 5th floor of the Fusion Building 5th floor of the Fusion Building 5th floor of the Fusion Building 5th floor of the Fusion Building Online reservations Available Online reservations Available Online reservations Available ・Optical microscope related 〇 〇 〇 〇 (Microstructure observation) (Microstructure observation) (Microstructure observation) (Microstructure observation) ・・・・Cell-related equipment Cell-related equipment Cell-related equipment Cell-related equipment Cell-related equipment Cell-related equipment 〇 〇 〇 (Cell analysis and preparation) (Cell analysis and preparation) (Cell analysis and preparation) (Cell analysis and preparation) ・・・Protein-related equipment Protein-related equipment Protein-related equipment Protein-related equipment △ △ △ △ (Mass analysis and protein analysis) (Mass analysis and protein analysis) (Mass analysis and protein analysis) (Mass analysis and protein analysis) ・・・・Nucleic acid-related equipment Nucleic acid-related equipment Nucleic acid-related equipment Nucleic acid-related equipment Nucleic acid-related equipment 〇 〇 〇 (DNA分析)・离心分离〇(生物学成分的纯化和浓度)・光分析相关(使用光谱吸收,荧光等质量和定量)基础医学基础医学构建基本医学基础医学构建基本医学基础医学构建基本医学builder buildent builtion fotecenter x photoctenter x x×posters ID,图片,图像/图像,图像/图像△(超细结构观察,分析,样品制备) *在线预订确认仅・ tsubstance标本制备××××(轻松的组织样品制备服务)・总通用设备△通用设备△
ICAP II 调查结果 ................................................................................................ 36 ICAP III 调查结果 ................................................................................................ 36 DAG 2 级别 1 ........................................................................................................ 38 DAG 2 级别 2 ........................................................................................................ 38 DAG 3 级别 1 ........................................................................................................ 40 DAG 3 级别 2 ........................................................................................................ 40 DAG 4 级别 1 和 2 ............................................................................................. 42 干扰平均工作量 ............................................................................................. 42 ECMO 工作量分析 ............................................................................................. 44 飞行员工作量分析 ............................................................................................. 46 常见任务 ............................................................................................................. 48
ICAP II 调查结果 ................................................................................................ 36 ICAP III 调查结果 ................................................................................................ 36 DAG 2 级别 1 ........................................................................................................ 38 DAG 2 级别 2 ........................................................................................................ 38 DAG 3 级别 1 ........................................................................................................ 40 DAG 3 级别 2 ........................................................................................................ 40 DAG 4 级别 1 和 2 ............................................................................................. 42 干扰平均工作量 ............................................................................................. 42 ECMO 工作量分析 ............................................................................................. 44 飞行员工作量分析 ............................................................................................. 46 常见任务 ............................................................................................................. 48
基于等离子体传感方案的光学生物传感器将高灵敏度和选择性与无标记检测相结合。然而,使用笨重的光学元件仍然阻碍了获得在实际环境中进行分析所需的微型系统的可能性。这里展示了一种基于等离子体检测的完全微型光学生物传感器原型,它能够快速和多路复用地感测高分子量和低分子量(80 000 和 582 Da)的分析物作为牛奶的质量和安全参数:一种蛋白质(乳铁蛋白)和一种抗生素(链霉素)。光学传感器基于以下智能集成:i)用作发光和光感应元件的微型有机光电器件和 ii)用于高灵敏度和特异性局部表面等离子体共振 (SPR) 检测的功能化纳米结构等离子体光栅。该传感器提供定量和线性响应,达到 10 − 4 的检测限