图像超分辨率是最流行的计算机视觉问题之一,在移动设备上有许多重要的应用。虽然已经为这项任务提出了许多解决方案,但它们通常甚至没有针对常见的智能手机 AI 硬件进行优化,更不用说通常仅支持 INT8 推理的更受限的智能电视平台了。为了解决这个问题,我们推出了第一个移动 AI 挑战赛,其目标是开发一种基于端到端深度学习的图像超分辨率解决方案,该解决方案可以在移动或边缘 NPU 上展示实时性能。为此,为参与者提供了 DIV2K 数据集和训练过的量化模型,以进行高效的 3 倍图像升级。所有模型的运行时间都在 Synaptics VS680 智能家居板上进行评估,该板具有能够加速量化神经网络的专用 NPU。所提出的解决方案与所有主流移动 AI 加速器完全兼容,能够在 40-60 毫秒内重建全高清图像,同时实现高保真度结果。本文提供了挑战赛中开发的所有模型的详细描述。
我们考虑深度神经网络 (DNN) 在具有挑战性的一次性/后训练环境中的模型压缩问题,在该环境中,我们获得了一个经过精确训练的模型,并且必须仅基于少量校准输入数据对其进行压缩,而无需进行任何重新训练。鉴于新兴的软件和硬件支持通过加速剪枝和/或量化来执行压缩模型,这个问题变得很普遍,并且已经针对这两种压缩方法分别提出了性能良好的解决方案。在本文中,我们介绍了一种新的压缩框架,该框架在统一的环境中涵盖权重剪枝和量化,具有时间和空间效率,并且大大提高了现有后训练方法的实际性能。在技术层面,我们的方法基于 [LeCun、Denker 和 Solla,1990] 的经典最佳脑外科医生 (OBS) 框架的精确和高效实现,该框架扩展到还涵盖现代 DNN 规模的权重量化。从实际角度来看,我们的实验结果表明,它可以显著改善现有后训练方法的压缩-准确度权衡,并且可以在后训练环境中实现修剪和量化的准确复合应用。
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
第一部分。对实验结果的讨论。前面论文中描述的结果表明,膜的电行为可以由图中所示的网络表示。1。电流可以通过为膜容量充电或通过与容量并联的电阻通过电阻来通过膜传递。离子电流分为由钠和钾离子(INA和IK)携带的成分,以及由氯化物和其他离子组成的小“泄漏电流”(I,I)。离子电流的每个组件都由驱动力确定,该驱动力可以方便地测量为电势差和具有电导尺寸的渗透系数。因此,钠电流(INA)等于钠电导率(9NA)乘以膜电位(E)和钠离子(ENA)平衡电位之间的差异。类似的方程式适用于'K和I,并在p上收集。 505。我们的实验表明GNA和9E是时间和膜电位的函数,但是ENA,EK,EL,CM和G可以将其视为恒定。可以通过说明:首先,将膜电位对渗透率的影响汇总会导致钠电导率的瞬时增加,并且降低但保持较慢但保持钾的增加速度的增加;其次,这些变化是分级的,并且可以通过重现膜来逆转。为了确定这些影响是否足以说明复杂现象,例如动作潜力和难治时期,有必要获得有关
摘要摘要,以疾病改良的药物在地平线上进行性行为性共济失调,生态有效,细粒度,数字健康指标非常有必要增加临床和患者报告的结果指标。步态和平衡干扰最常作为退化性小脑共济失调的第一个迹象,并且是疾病进展中据报最多的残疾特征。因此,数字步态和平衡度量构成了临床试验的有希望的和相关的绩效结果。这次叙述性综述和嵌入式共识将描述数字步态和平衡测量值的敏感性的证据,以评估共济失调的严重程度和进展,提出了一种共识方案,用于在自然史研究和临床试验中建立步态和平衡指标,并讨论将其用作绩效结果的相关问题。
● 1943 年 - Pitts 和 McCulloch 创建了基于人脑神经网络的计算机模型 ● 20 世纪 60 年代 - 反向传播模型基础 ● 20 世纪 70 年代 - AI 寒冬:无法兑现的承诺 ● 20 世纪 80 年代 - 卷积出现,LeNet 实现数字识别 ● 1988-90 年代 - 第二次 AI 寒冬:AI 的“直接”潜力被夸大。AI = 伪科学地位 ● 2000-2010 年 - 大数据引入,第一个大数据集 (ImageNet) ● 2010-2020 年 - 计算能力,GAN 出现 ● 现在 - 深度学习热潮。AI 无处不在,影响着新商业模式的创建
lable气候变化导致意外的干旱,极端温度,过度降雨和意外风暴,导致过去从未发生过的灾难。考虑到这一点,建立环境友好机制至关重要。近年来,农业化学物质的不受限制和不受限制地使用了,以获得更高的产量,而另一侧的产量导致了几个农业问题和损坏的土壤。过度使用化学氮肥不仅会加速土壤酸化,还冒着污染地下水和大气的风险。生物肥料和那些包含土壤本地微生物群的投入为减轻不利气候变化的负面影响提供了更安全的选择。Mycorrhiza是一种土壤真菌,在自身与宿主植物根部之间建立了共同的共生关联。它对植物营养产生了重大贡献,特别是磷摄取以及固定(例如Zn)和移动(S,Ca,k,k,fe,Mn和N)元素的选择性吸收