有许多因素影响公立学校环境中的学习环境。因此,建立多维方法的识别是为教师的工具箱结合各种“工具”的认识,可以证明非常有效。研究表明,运动就是一种可以增加学生学习能力的工具(Ratey,2008)。这项研究的目的是探索在阿巴拉契亚农村的一年级教室中脑能量的影响。该研究的结果表明,脑能量器对任务行为和学术成就具有积极影响。运动也建议作为减轻儿童创伤影响的一种策略。关键字:大脑能量,任务外行为,体育锻炼,儿童创伤
紧凑型和高速电光调节器在各种大规模应用中起着至关重要的作用,包括光学计算,量子和神经网络以及光通信链路。常规的电折射量器调节剂Suchassilicon(SI),III-VandGrapaPheneSissufferFromaFundAmentalTradeOffbetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetbetBetBetBetBetBetBetBetBetbetBetBetBetBetBetWeendevicElength和光损失限制了他们的缩放功能。高插条环谐振器被用作合并强度调节器,但是由于与相移相关的高插入损失,它们对相位调制的使用受到限制。在这里,我们表明,高核谐振器可以通过同时调制折射率的真实和虚构部分,从而在相同的程度上,即1 N
幸运的是,存在旨在解决量子威胁和审核问题的倡议。一个示例是TLS加密客户端Hello(ECH)用户隐私的扩展[Rescorla等。2022]和开放量器安全(OQS)项目[Stebila and Mosca 2016],以保护用户免受未来的量子攻击。但是,大多数用户对其TLS连接的安全性一无所知。进一步,这些方法可能会对网络性能产生负面影响。影响主要是由这些最新甲基化的大量数据驱动的。即使这些方法尚未在TLS中进行标准化,也可能在不久的将来使用它们。正在实施,并进行了量子安全实验。
摘要:变形和门错误严重限制了最先进的量子计算机的功能。这项工作介绍了一种量子化学的参考状态误差(REM)的策略,可以直接在当前和近期设备上实施。REM可以与现有的缓解程序一起应用,同时需要最少的后处理,并且只有一个或没有其他测量值。该方法对基础量子机械ansatz不可知,并且是为变异量子本质量器而设计的。在超导量子硬件上证明了小分子基态能量(H 2,HEH +和LIH)的计算准确性(H 2,HEH +和LIH)的两种量顺序。模拟来证明该方法的可扩展性。■简介
摘要。应该可以使用量子计算机,它们将减少基本秘密基原始人(例如块状键)的有效关键长度。为了解决这个问题,我们要么需要使用具有固有键的块检查器,要么开发钥匙长度扩展技术来放大块状的安全性以使用更长的键。我们考虑后一种方法,并重新审视FX和双重加密结构。从经典上讲,FX被证明是一种安全的钥匙长度扩展技术,而双重加密由于中间攻击而无法比单个加密更安全。在这项工作中,我们提供了积极的结果,并具有具体和紧密的界限,以确保这两种结构在理想模型中针对量子攻击者的安全性。对于FX,我们考虑了一个部分Quantum模型,其中攻击者可以量子访问理想原始的,但仅访问FX的经典访问。这是一种自然模型,也是最强大的模型,因为当授予两个orac时量子访问时,对FX的有效量子攻击就存在于全量器模型中。我们在此模型中为FX提供了两个结果。第一个建立了FX对非自适应攻击者的安全性。第二个使用随机的Oracle代替理想的密码来针对FX的一般自适应攻击者建立安全性。此结果依赖于Zhandry(Crypto '19)的技术来懒惰地采样量子随机甲骨文。完全懒惰地采样量子随机排列的扩展,这将有助于解决标准FX的适应性安全性,这是一个重要但充满挑战的开放问题。我们介绍了部分量词证明的技术,而无需分别分析经典和量子甲骨文,这在现有工作中很常见。这可能具有更广泛的兴趣。对于双重加密,我们表明它在全量器模型中扩增了强大的伪随机置换安全性,从而增强了较弱的键恢复安全性的已知结果。这是通过调整Tessaro和Thiruvengadam(TCC '18)的技术来完成的,以将安全性降低到解决列表脱节问题的困难中,然后通过将其减少到已知的量子限制的链接来显示其硬度。
摘要 - 高速和功率电路的设计复杂性增加到更高的操作频率。因此,此手稿概述了如何使用两个可切换除法比率为4和5的双重模数预分量器设计和优化完全差异的发射极耦合逻辑(ECL)门。第一个预拉剂被优化为最高的运行频率,分别为5和4的分别为142 GHz,甚至166 GHz。此外,另一位预拉剂已针对广泛使用的80 GHz频段进行了优化,该频段已由汽车行业大量促进,并且该域中有大量组件。可以在具有较宽的除法比率范围的完全可编程频率分隔线中使用两个预分量员。作为对具有出色噪声性能的频率转换设备的添加期噪声的测量非常具有挑战性,因此在理论上进行了讨论,并实际上进行了。在100 Hz的集成极限内,测得的抖动在500 AS和1.9 FS之间,最高为1 MHz偏移频率。
作为这笔资金的一部分,在该计划的第3A期间,Good Hoppy医院分配了12,506,872英镑。这使医院可以安装热泵,委托新的低温热水(LTHW)系统并退役现有的蒸汽分配系统。以及巨型650kW空气源热泵,其他资助的能源效率措施包括无维护的LED照明,屋顶绝缘和管道绝缘。Good Hope医院的其他部分包括:■跨站点安装的新的LTHW环主体增加了加热和热水系统的弹性,这意味着可以进行未来的维护任务,而对现场的中断较少。它还包括一个连接点,在不太可能发生的重大锅炉故障的情况下将临时锅炉带到现场■取消了三个蒸汽产生的锅炉,替换为更节能的三个低温热水锅炉■降低了旧的蒸汽热量器,降低了旧的蒸汽卡路里库,而某些锅炉则需要增加维护的锅炉,以实现其他重要的维护状态,以实现其他重要的任务。安装在所有Plantrooms的控件,从而更好地控制加热和热水系统,这意味着更节能的系统
硅(SI)中的供体和量子点旋转量值是可伸缩量子计算体系结构的有吸引力的候选者[1-3]。si提供了一个理想的矩阵,用于托管自旋矩形,因为它在微电子行业,弱自旋轨道耦合以及具有零核自旋的同位素的存在。nat-ural Si由三个同位素组成:28 Si(92.23%),29 Si(4.67%)和30 Si(3.1%)[4]。NAT Si中的量子量解的主要来源是由于与周围的29 Si核耦合,该核具有i = 1/2的核自旋。< / div>29 si旋转的偶极爆发在局部磁场中引起伴随,从而导致时间变化的量子共振频率[5,6]。通过使用HAHN-ECHO脉冲序列测量了对电子供体核的电子[7]的自旋相干时间[7]和电离供体核[8]的60 ms [7]和60 ms的限制。幸运的是,28 Si没有核自旋,因此可以为旋转量器提供理想的低噪声环境。在28 si层中供体旋转量值的较长连贯性时间与800 ppm残留29 si [9]是恶魔 -
摘要 - 多项式函数一直是多翼混沌系统(MWCSS)的电路实现和工程化的主要限制。为了消除这种瓶颈,我们通过在Sprott C系统中引入正弦函数来构建一个简单的MWC,而无需多项式函数。理论分析和数值模拟表明,MWC不仅可以使用任意数量的黄油量产生多量器的吸引子,而且还可以通过多个ple方式来调整黄油液的数量,包括自我振荡时间,控制参数和初始状态。为了进一步探索所提出的MWC的优势,我们使用可循环可用的电子元素实现了其模拟电路。结果是,与传统的MWCS相比,我们的电路实施大大减少了电子组件的消耗。这使MWCS更适合许多基于混乱的工程应用程序。更重要的是,我们提出了MWC在混沌图像加密中的应用。直方图,相关性,信息能量和钥匙灵敏度表明,简单的图像传感方案具有很高的安全性和可靠的加密性能。最后,我们开发了一个可编程的门阵列测试平台,以实现基于MWCS的图像加密系统。理论分析和实验结果都验证了所提出的MWC的可行性和可用性。