在我们最近对校准程序进行重大修订之际,我们决定将现有的 NIST 量块校准程序文档汇编并扩展为一个文档。我们使用“汇编”一词而不是“编写”,因为所描述的大多数技术在过去 20 年中已由尺寸计量学小组的各个成员记录下来。不幸的是,大部分工作
1 英特尔公司可编程解决方案事业部 2 多伦多大学和矢量研究所 3 卡内基梅隆大学 { andrew.boutros, eriko.nurvitadhi } @intel.com 摘要 — 人工智能 (AI) 的重要性和计算需求日益增长,导致了领域优化硬件平台的出现。例如,Nvidia GPU 引入了专门用于矩阵运算的张量核心,以加速深度学习 (DL) 计算,从而使 T4 GPU 的峰值吞吐量高达 130 int8 TOPS。最近,英特尔推出了其首款针对 AI 优化的 14nm FPGA Stratix 10 NX,其内置 AI 张量模块可提供高达 143 int8 TOPS 的估计峰值性能,堪比 12nm GPU。然而,实践中重要的不是峰值性能,而是目标工作负载上实际可实现的性能。这主要取决于张量单元的利用率,以及向/从加速器发送数据的系统级开销。本文首次对英特尔的 AI 优化 FPGA Stratix 10 NX 进行了性能评估,并与最新的 AI 优化 GPU Nvidia T4 和 V100 进行了比较,这些 GPU 都运行了大量的实时 DL 推理工作负载。我们增强了 Brainwave NPU 覆盖架构的重新实现,以利用 FPGA 的 AI 张量块,并开发了工具链支持,使用户能够仅通过软件对张量块进行编程,而无需在循环中使用 FPGA EDA 工具。我们首先将 Stratix 10 NX NPU 与没有张量块的 Stratix 10 GX/MX 版本进行比较,然后对 T4 和 V100 GPU 进行了详细的核心计算和系统级性能比较。我们表明,我们在 Stratix 10 NX 上增强的 NPU 实现了比 GPU 更好的张量块利用率,在批处理 6 时,与 T4 和 V100 GPU 相比,平均计算速度分别提高了 24 倍和 12 倍。即使在允许批处理大小为 32 的宽松延迟约束下,我们仍分别实现了与 T4 和 V100 GPU 相比 5 倍和 2 倍的平均速度提升。在系统级别,FPGA 的细粒度灵活性及其集成的 100 Gbps 以太网允许以比通过 128 Gbps PCIe 本地访问 V100 GPU 少 10 倍和 2 倍的系统开销延迟进行远程访问,分别用于短序列和长序列 RNN。索引术语 — FPGA、GPU、深度学习、神经网络
- 401k 计划中最高 4% 公司薪酬匹配 工作描述: 维修和校准测试和测量设备,包括但不限于螺纹量规、普通环规和塞规、量块、针规、长度标准 · 根据需要执行实验室和现场校准。 制定校准程序并推荐相关标准。 完成与任务相关的适用文档。 积极参与团队环境。 通过电子邮件、语音邮件、备忘录、日志等进行沟通。 确保及时、高质量地完成所有必需的业务任务。
(或按热键)首先掌握仪器,然后校准您的特定量具。用户可以在预定义应用程序(量块、环、塞子等)和自由测量(用于自定义应用程序)之间进行选择。选择应用程序后,对话框将不断提示用户输入信息,以构建和打开“智能”电子表格。对于预定义应用程序,此“智能”电子表格将自动输入公称尺寸、公差带、定义用于螺纹测量的最佳线材尺寸、计算螺距直径,并根据需要标记超出公差条件。
示例 27 E1 称重. . . . . . . . . . . . . . . . . . . . . . . . . 27 E2 表面温度. . . . . . . . . . . . . . . . . . . . 29 E3 落球粘度计. . . . . . . . . . . . . . . . . . . 31 E4 皮托管. . . . . . . . . . . . . . . . . . . . . . . 32 E5 量块. . . . . . . . . . . . . . ... .. 42 E11 微波步进衰减器.. .. .. .. .. .. .. .. .. 44 E12 锡标准溶液.. . . . . . . . . . . . . . . . . 47 E13 热膨胀系数.. . . . . . . . . . . . . . . . 50 E14 氧化铝的特征强度.. . . . . . . . . . . . 51 E15 电压反射系数.. . . . . . . . . . . . . . 54 E16 氧同位素.. . . . . . . . . . . . . . 54 E17 气体分析. . . . . . . . . . . . . 57 E18 氮气中的二氧化硫. . . . . . . . . . . 59 E19 血栓溶解. . . . . . . . . . . . . . . 64 E20 温泉浴. . . . . . . . . . . . . . 66 E21 牛顿万有引力常数 . . . . . . . . . . . . . . 66 E22 全麦面粉中的铜 . . . . . . . . . . . . . . . . . 70 E23 氚半衰期 . . . . . . . . . . . . . . . . . .
摘要 —本文基于 MEMS 技术设计并制作了带穿孔电极的驻极体振动能量收集器。装置中的固定电极上分布有通孔,以优化能量收集过程。在有限元法 (FEM) 模拟和实验中分析并讨论了孔对装置输出功率的影响。可以看出,通孔可以有效降低大气中可移动质量块上的挤压膜空气阻尼力。因此,可以减少由于空气阻尼造成的能量损失,并增加装置的输出功率。还详细研究了孔直径和数量对装置输出功率的影响。通过优化孔的配置,孔直径为 400 µ m、深度为 100 µ m 的穿孔装置在 1.84 m/s 2 的低加速度下表现出最高的功率输出,这证明了未来在自供电电子产品中的良好应用。 [2020-0380]
PTB工作的一个核心领域一直是提高测量精度。这不仅对于提供最高精度的测量可追溯性是必要的,而且还为许多工业合作奠定了基础 [19]。员工的丰富经验和非常好的技术设备是PTB在计量研究领域的重要独特卖点。量块、环、圆柱和球等坐标测量技术的参考标准的校准由PTB进行,其精度在国际比较中处于领先地位。这样,PTB也为自己的研究工作提供了计量基础。通过引入球板 [20],特别是通过开发 CMM 的数值校正 [21],PTB 为提高坐标测量技术的精度做出了重要贡献。PTB还为齿轮测量技术的发展提供了重要的推动力。齿轮技术仍然是德国经济的一项关键技术,作为欧洲领先的齿轮测量可追溯性机构,PTB 正在努力与工业界合作,进一步降低工业中齿轮测量的测量不确定度 [22, 23 ]。
内径千分尺(卡尺型)。内径千分尺(杆型)。微米深度计。超微米。万能测量机。电限位比较仪。目测仪。表盘比较仪。光学平面。光学比较仪。轮廓测量投影仪。工具制造显微镜。光学分度头。正弦杆。安装在量块上的正弦杆。正弦板。带底板的正弦板。千分表(齿轮系类型)。千分表测试指示器。表面板。工具制造商的平板。硬化钢方形。管螺纹量规检查块。圆柱塞规,单端实心。圆柱塞规,单端渐进式。圆柱塞规,双端。圆柱塞规,可更换。圆柱塞规,可逆。普通锥形塞规。螺纹塞规。锥形螺纹管塞规。锥形普通管塞规。渐开线花键塞规。直边花键塞规。校准塞规。刻度塞规。平塞规。杂项塞规。普通环规。双环规。渐进环规。螺纹环规。锥形螺纹管环规。锥形普通管环规。花键环规。螺纹管三辊量规。锥形平管三辊量规。可调式卡规。可调式长度量规。组合式环规和卡规。
调谐质量阻尼器 (TMD) 是一种由质量块、弹簧和阻尼器组成的装置,它附在结构上,用于降低结构的动态响应。阻尼器的频率被调整到特定的结构频率,这样当该频率被激发时,阻尼器将与结构运动产生异相共振。能量由作用于结构的阻尼器惯性力耗散。TMD 概念最早由 Frahm 于 1909 年应用 (Frahm, 1909),以减少船舶的横摇运动以及船体振动。Ormondroyd 和 Den Hartog (1928) 在论文中提出了 TMD 理论,随后 Den Hartog 在其关于机械振动的书中 (1940) 详细讨论了最佳调谐和阻尼参数。初始理论适用于受到正弦力激励的无阻尼 SDOF 系统。许多研究人员研究了将该理论扩展到阻尼 SDOF 系统。Randall 等人做出了重大贡献。(1981)、Warburton (1981, 1982)、Warburton 和 Ayorinde (1980) 以及 Tsai 和 Lin (1993)。本章首先介绍 TMD 设计的介绍性示例,并简要描述了建筑结构中调谐质量阻尼器的一些实现。接下来讨论受到谐波力激励和谐波地面运动的 SDOF 系统的调谐质量阻尼器的严格理论。考虑了各种情况,包括连接到无阻尼 SDOF 系统的无阻尼 TMD、连接到无阻尼 SDOF 系统的阻尼 TMD 以及连接到阻尼 SDOF 系统的阻尼 TMD。时间历史响应