团队专注于原子、分子和光学物理领域的前沿研究,包括但不限于量子光学-原子光学和量子计量学。已发展了原子和光的量子调控、量子关联干涉、量子增强传感和超越传统技术的精密测量等多个研究方向。该团队正在与华东师范大学和上海交通大学联合组建。目前,团队由 5 名教授、3 名副教授、2 名助理教授和 4 名博士后组成,其中包括 1 名国家杰出青年科学基金获得者等。此外,还获得过饶玉泰物理学奖、上海市自然科学奖一等奖等多项奖项。
'类似激光的“远程相干量子现象可能会在细胞骨架微管中生物学发生。本文介绍了我们称为“超赞”和“自我诱导的透明度”现象中发生的现象中发生的理论预测。考虑了在微管的空心核心和量化的电磁辐射场中被罚款的水分子的电偶极场之间的相互作用,并且将微管被理论化以扮演非线性相干光学设备的作用。超高是一种特定的量子机械排序现象,其特征时间比热相互作用的时间短得多。因此,微管中的光学信号(和计算)将不受热噪声和损失。微管网络和其他细胞骨架结构网络中的超级型光学计算可能为生物分子认知和意识的底物提供基础。
1 林茨 ELLIS 部门,LIT AI 实验室,机器学习研究所,约翰内斯开普勒大学,4040 林茨,奥地利;brandstetter@ml.jku.at (JB);kofler@ml.jku.at (JK);hochreit@ml.jku.at (SH) 2 奥地利科学院量子光学与量子信息研究所与维也纳大学维也纳量子科学与技术中心,1090 维也纳,奥地利;manuel.erhard@univie.ac.at 3 多伦多大学化学系与人工智能矢量研究所,多伦多,ON M5G 1M1,加拿大; mario.krenn@univie.ac.at 4 多伦多大学计算机科学系和人工智能矢量研究所,加拿大安大略省多伦多 M5G 1M1 5 人工智能高级研究所 (IARAI),Landstraßer Hauptstraße 5, 1030 Vienna,奥地利 * 通讯地址:adler@ml.jku.at † 当前地址:Quantum Technology Laboratories GmbH,Wohllebengasse 4/4, 1040 Vienna,奥地利。‡ 当前地址:马克斯普朗克光科学研究所,91058 埃尔朗根,德国。§ 当前地址:阿姆斯特丹大学理学院信息学研究所,1090 GH 阿姆斯特丹,荷兰。
摘要:量子增强传感和计量为满足当今对集成芯片的基本和技术需求铺平了道路,这些芯片超越了经典的功能和测量极限。相位或强度等光学特性的最精确测量需要量子光学测量方案。这些非经典测量利用了光学探测态的纠缠和压缩等现象。与经典光检测方案相比,它们的检测限也较低。利用纠缠光子或压缩光的非经典光源进行生物传感是实现可集成在芯片上的量子光学生物科学实验室的关键。利用这种非经典光源进行单分子传感将是实现最小不确定性和每光子数最高信息的先行者。这需要一种集成的非经典传感方法,将量子光学的微妙非确定性测量技术与通过纳米光子学和纳米等离子体学实现的设备级集成能力相结合。在此背景下,我们回顾了量子传感的基本原理、量子光学探针和协议以及最先进的构建
Div> A Institute of Health and Analytics, Petronas Technology University, Silver, Malaysia B Institute of Autonomous Systems, Petronas Universiti Technology, Silver, Malaysia C Department of Electrical and Electronic Engineering, Universiti Technology Petronas, Silver, Malaysia D Department of Neuroscience Electronique, Informatique et image (LE2I), ERL Vibot CNRS 6000, Universite de Bourgogne, France
超导量子电路是开发可扩展量子计算机最有前途的解决方案之一。超导电路采用超导制造技术和微波技术制造而成,尺寸从几微米到几十米不等,在低温下表现出叠加和纠缠等独特的量子特性。本书全面、完整地介绍了超导量子电路的世界以及它们在当前量子技术中的应用。作者首先描述它们的基本超导特性,然后探讨它们在量子系统中的应用,展示它们如何模拟单个光子和原子,并最终在高度连接的量子系统中表现为量子比特。特别关注这些超导电路在量子计算和量子模拟中的前沿应用。这本通俗易懂的教材是为研究生和初级研究人员编写的,包含大量家庭作业和例题。
frrrr − = − r
Magan Mohagag 1*,Luca Mazzarella 1, ,阿尔伯特·鲁拉10号,沃尔夫冈·P。哪个10,Nan 1,Aileen ZhaiMagan Mohagag 1*,Luca Mazzarella 1, ,阿尔伯特·鲁拉10号,沃尔夫冈·P。哪个10,Nan 1,Aileen Zhai
摘要 光的量子特性使革命性的通信技术成为可能。推进这一研究领域的关键是清晰地理解状态、模式、场和光子的概念。场模式的概念源自经典光学,而状态的概念在以量子力学的方式处理光时必须仔细考虑。术语“光子”是一个重载标识符,因为它通常用于指代量子粒子或场的状态。这种重载通常不结合上下文使用,可能会混淆描述我们测量的现实的物理过程。我们使用现代量子光学理论回顾了这些概念之间的用法和关系,包括光子波函数的概念,该概念的现代历史由 Iwo Białynicki-Birula 在本期刊上发表的一篇开创性论文推进,本文就是向他致敬。 1. 简介 在开始研究量子光学时,很自然地会问:“什么是光子?”但也许更好的问题是:“什么是量子场?”鉴于量子理论与我们赋予该理论的数学元素的名称无关,那么我们如何命名和解释它们何时重要呢?在没有完整的数学解决方案的情况下,尝试对问题建立直觉时,正确地概念化和命名理论元素会有所帮助。这篇献给 Iwo Białynicki-Birula 教授的特刊以教程的方式回顾了状态、模式、场和光子在量子光学中的作用,承认了他对该主题的重要贡献。i 我们希望启发那些可能刚进入该领域的研究人员,例如那些在经典网络领域工作并且现在开始考虑量子网络潜在有用应用的研究人员。我们回顾了光子波函数的概念,它的现代历史大致始于 Białynicki-Birula 在本期刊上发表的一篇论文 [1] 和 John Sipe [2] 的一篇同期论文。状态、模式和场是适用于经典和量子领域的概念。本文以教学的方式回顾了这些概念在两个领域中的产生和定义,描述了电磁场激励的量化如何引入新的(可测量的)行为,并阐明了两个领域之间的联系。
本课程提供电磁场的半经典描述及其量子力学量化。它使用量子力学算子处理光腔、光学相干性、干涉测量和光检测。它还考虑了原子场相互作用、Jaynes-Cummings 模型、开放量子力学系统分析以及离散系统。5. 本课程的先决条件(如果有):无