量子态设计通过实现随机量子态的有效采样,在设计和基准测试各种量子协议中发挥着重要作用,其应用范围广泛,从电路设计到黑洞物理。另一方面,对称性有望降低状态的随机性。尽管对称性无处不在,但它对量子态设计的影响仍然是一个悬而未决的问题。最近引入的投影集合框架通过结合投影测量和多体量子混沌来生成高效的近似状态 t - 设计。在这项工作中,我们研究了从表现出对称性的随机生成器状态中状态设计的出现。利用平移对称性,我们通过分析建立了导致状态 t - 设计的测量基础的充分条件。然后,通过利用迹距离测量,我们通过数值研究了设计的收敛性。随后,我们检查了充分条件的违反情况,以确定无法收敛的基。通过研究具有平移对称性的混沌倾斜场伊辛链的动力学,我们进一步证明了物理系统中状态设计的出现。与对称性破坏的情况相比,我们发现在早期时间演化过程中迹线距离的收敛速度更快。为了描述我们结果的普遍适用性,我们将分析扩展到其他对称性。我们希望我们的发现能够为进一步探索封闭和开放量子多体系统的深度热化和平衡铺平道路。
摘要 本文介绍了一种新颖而有效的量子态估计技术,即低秩矩阵完成量子态断层扫描,用于表征纯量子态,因为它只需要非纠缠基和 2 n + 1 个局部泡利算子。这大大降低了过程的复杂性并提高了状态估计的准确性,因为它消除了对纠缠基的需求,而纠缠基在量子设备上很难通过实验实现。这种基于矩阵完成的方法所需的后处理最少,准确性和效率更高,使其成为研究量子系统特性的理想基准测试工具,使研究人员能够验证量子设备的准确性,表征其性能,并探索量子现象的底层物理。我们的数值结果表明,该方法在准确重建真实量子设备上的多量子比特量子态方面优于当代技术,这为量子态表征领域做出了宝贵的贡献,也是可靠部署中型和大型量子设备的重要一步。
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税的许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
我们研究并确定任何有限时间物理过程的理想输入。我们证明熵流、热量和功的期望值都可以通过初始状态的 Hermitian 可观测量来确定。这些 Hermitian 算子概括了行为的广度和常见热力学目标的理想输入。我们展示了如何通过测量有限数量、实际上任意输入的热力学输出来构造这些 Hermitian 算子。因此,少量测试输入的行为决定了所有输入的全部热力学行为范围。对于任何过程,熵流、热量和功都可以通过纯输入态(各自算子的本征态)来极化。相反,最小化熵产生或最大化自由能变化的输入状态是从算子获得的非纯混合态,它们是凸优化问题的解。为了实现这些目标,我们提供了一种易于实现的密度矩阵流形梯度下降法,其中解析解在每个迭代步骤中产生有效的下降方向。有限域内的理想输入及其相关的热力学算子可以用较少的努力获得。这允许在无限维量子系统的量子子空间内分析理想的热力学输入;它还允许在经典极限中分析理想输入。我们的例子说明了“理想”输入的多样性:不同的初始状态使熵产生最小化,使自由能的变化极端化,并最大化工作提取。
我们提出了一种通用的去噪算法,用于同时对量子态和测量噪声进行层析成像。该算法使我们能够充分表征任何量子系统中存在的状态准备和测量 (SPAM) 误差。我们的方法基于对由幺正运算引起的线性算子空间的属性的分析。给定任何具有噪声测量设备的量子系统,我们的方法可以输出探测器的量子态和噪声矩阵,最高可达单个规范自由度。我们表明,这种规范自由度在一般情况下是不可避免的,但这种退化通常可以使用关于状态或噪声属性的先验知识来打破,从而为几种类型的状态噪声组合固定规范,而无需对噪声强度进行假设。这样的组合包括具有任意相关误差的纯量子态,以及具有块独立误差的任意状态。该框架可以进一步使用有关设置的可用先验信息来系统地减少状态和噪声检测所需的观察和测量次数。我们的方法有效地推广了现有的解决问题的方法,并且包括了文献中考虑的需要不相关或可逆噪声矩阵或特定探测状态的常见设置作为特殊情况。
当目标物体嵌入在嘈杂的环境中时,使用弱光源感知目标物体的存在是一项艰巨的任务。一种可能性是使用量子照明来完成此任务,因为它在确定物体存在和范围方面的表现优于传统照明。即使传统照明和量子照明都限制在基于非同时、相位不敏感的巧合计数的相同次优物体检测测量中,这种优势仍然存在。受现实实验协议的启发,我们提出了一个使用简单探测器分析巧合多发数据的理论框架。这种方法允许包括经常被忽视的非巧合数据,并提供无需校准的阈值来推断物体的存在和范围,从而实现不同检测方案之间的公平比较。我们的结果量化了在嘈杂的热环境中进行目标识别时量子照明相对于传统照明的优势,包括估计以给定置信度检测目标所需的拍摄次数。
在过去的二十年里,冷分子研究从一个新兴领域发展成为一股强大的科学潮流,拓展了物理科学的视野 1 – 3 。科学界目前正在见证从早期的抱负到有影响力的科学成果和新兴技术的转变。从冷却分子到未探索的低能状态的开创性想法 4 , 5 为更成熟的目标驱动分子量子态控制追求开辟了道路 6 。化学相互作用的研究越来越详细,包括单个反应途径和共振 7 – 9 。分子复杂性已成为展示复杂量子控制和探索新兴现象的一个特征 10 – 15 。通过使用外部场操纵分子来实现具有长程、各向异性相互作用的可调多体哈密顿量的几种想法已经扩展了量子模拟的前景 16 – 20 。具有延长相干时间的分子现在设定了更严格的限制,为量子传感以及探索基本对称性和标准模型以外的新物理开辟了新天地 21 – 23 。此外,对复杂分子的越来越精确的控制恰好符合量子信息的新兴主题,它建立在微观量子系统的高保真操纵之上 24 – 27 。鉴于分子在广泛的物理过程中发挥的核心作用,冷分子领域的进展正在将来自不同学科的科学家聚集在一起。粒子物理学家对使用分子来寻找逃避粒子和场很感兴趣。凝聚态物理学家正在构建量子材料
摘要 众所周知,量子态的 Wigner 函数可以取负值,因此它不能被视为真正的概率密度。在本文中,我们研究了在相空间中寻找扩展到负 Wigner 函数的熵类函数的难度,然后主张定义与任何 Wigner 函数相关的复值熵的优点。这个量,我们称之为复 Wigner 熵,是通过在复平面上对 Wigner 函数的 Shannon 微分熵的解析延拓来定义的。我们表明,复 Wigner 熵具有有趣的特性,特别是它的实部和虚部在高斯幺正(相空间中的位移、旋转和压缩)下都是不变的。当考虑高斯卷积下 Wigner 函数的演化时,它的实部在物理上是相关的,而它的虚部仅与 Wigner 函数的负体积成正比。最后,我们定义任何维格纳函数的复值费希尔信息,当状态经历高斯加性噪声时,它与复维格纳熵的时间导数相关联(通过扩展的德布鲁因恒等式)。总的来说,预计复平面将为分析相空间中准概率分布的熵特性提供一个适当的框架。
引言:量子态断层扫描是量子信息学中的一项基本任务,旨在根据实验数据构建未知量子态的经典描述。量子态断层扫描的一个关键问题是:构建一个估计量的经典描述所需的最小样本数(未知状态的副本)是多少,该估计量的迹线距离与真实状态的迹线距离极有可能为 ε 接近?虽然这个问题已经在 qudit 系统中得到了广泛的解决,但对于连续变量 (CV) 系统 [1-3],例如以无限维希尔伯特空间为特征的玻色子和量子光学系统,这是一个悬而未决的问题。关于 CV 系统量子态断层扫描的文献主要依赖于相空间近似 [4-7],而相空间近似——至关重要的是——没有提供关于迹线距离(这是量子态之间距离最有意义的概念 [8、9])的任何严格性能保证。鉴于量子光学平台(以 CV 系统为例)在量子计算、通信和计量等量子技术中发挥的关键作用,文献中的这一空白尤其令人惊讶。我们的工作填补了这一空白,从轨迹距离的角度对 CV 系统的量子态断层扫描进行了详尽的分析。我们分析了三类状态的断层扫描:
摘要 最近的进展凸显了当前量子系统的局限性,特别是近期量子设备上可用的量子比特数量有限。这一限制极大地限制了可以利用量子计算机的应用范围。此外,随着可用量子比特的增加,计算复杂性呈指数增长,带来了额外的挑战。因此,迫切需要有效使用量子比特并减轻当前的限制和未来的复杂性。为了解决这个问题,现有的量子应用试图将经典系统和量子系统集成在一个混合框架中。在本文中,我们专注于量子深度学习,并介绍一种名为 co-TenQu 的协作经典量子架构。经典组件采用张量网络进行压缩和特征提取,使高维数据能够编码到具有有限量子比特的逻辑量子电路上。在量子方面,我们提出了一种基于量子态保真度的评估函数,通过双方之间的反馈回路迭代训练网络。co-TenQu 已在模拟器和 IBM-Q 平台上实现和评估。与最先进的方法相比,co-TenQu 在公平环境下将经典深度神经网络的性能提升了 41.72%。此外,它的性能比其他基于量子的方法高出 1.9 倍,在实现相似准确度的同时,使用的量子比特数却减少了 70.59%。