抽象的量子状态制备是许多量子算法中的重要常规,包括方程式线性系统,蒙特卡洛模拟,量子采样和机器学习的解决方案。迄今为止,还没有将经典数据编码为基于门的量子设备的既定框架。在这项工作中,我们提出了一种通过将分析函数采样到量子电路中获得的矢量的编码方法,该量子电路具有相对于量子数的多项式运行时,并且提供了> 99。9%的精度,比最先进的两个Quibit Gate Fidelity更好。我们采用硬件有效的变分量子电路,这些电路使用张量网络模拟,以及向量的矩阵乘积状态表示。为了调整变化门,我们利用了融合自动梯度计算的Riemannian优化。此外,我们提出了一种“一次切割,测量两次”方法,该方法使我们在大门更新期间避免了贫瘠的高原,将其基准为100 Qubit的电路。值得注意的是,任何具有低级别结构(不受分析功能的限制)的向量都可以使用呈现的方法编码。我们的方法可以轻松地在现代量子硬件上实现,并有助于使用混合量子计算体系结构。
1 光的连续变量量子理论 3 1.1 量子谐振子..................................................................................................................................................................4 1.1.1 哈密顿量的量子化..................................................................................................................................................................4 1.1.2 海森堡不确定性原理和算子归一化.................................................. 5 1.2 光的模态表示..................................................................................................................................................................................6 1.2.1 经典光.................................................................................................................................................................................. . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.1 具有连续变量的图状态的理论框架 . ...
我们提出了一种通用的去噪算法,用于同时对量子态和测量噪声进行层析成像。该算法使我们能够充分表征任何量子系统中存在的状态准备和测量 (SPAM) 误差。我们的方法基于对由幺正运算引起的线性算子空间的属性的分析。给定任何具有噪声测量设备的量子系统,我们的方法可以输出探测器的量子态和噪声矩阵,最高可达单个规范自由度。我们表明,这种规范自由度在一般情况下是不可避免的,但这种退化通常可以使用关于状态或噪声属性的先验知识来打破,从而为几种类型的状态噪声组合固定规范,而无需对噪声强度进行假设。这样的组合包括具有任意相关误差的纯量子态,以及具有块独立误差的任意状态。该框架可以进一步使用有关设置的可用先验信息来系统地减少状态和噪声检测所需的观察和测量次数。我们的方法有效地推广了现有的解决问题的方法,并且包括了文献中考虑的需要不相关或可逆噪声矩阵或特定探测状态的常见设置作为特殊情况。
摘要 量子态神经网络表示的变分优化已成功应用于解决相互作用的费米子问题。尽管发展迅速,但在考虑大规模分子时仍存在重大的可扩展性挑战,这些分子对应于由数千甚至数百万个泡利算子组成的非局部相互作用的量子自旋哈密顿量。在这项工作中,我们引入了可扩展的并行化策略来改进基于神经网络的变分量子蒙特卡罗计算,以用于从头算量子化学应用。我们建立了 GPU 支持的局部能量并行性来计算潜在复杂分子哈密顿量的优化目标。使用自回归采样技术,我们展示了实现耦合簇所需的挂钟时间的系统改进,其中基线目标能量高达双激发。通过将所得自旋哈密顿量的结构纳入自回归采样顺序,性能得到进一步增强。与经典近似方法相比,该算法实现了令人鼓舞的性能,并且与现有的基于神经网络的方法相比,具有运行时间和可扩展性优势。
量子非局域性是多体量子系统的一个典型现象,它没有任何经典对应物。纠缠是最具代表性的非局域量子关联之一,它不能仅通过局域操作和经典通信(LOCC)来实现 1、2。众所周知,量子纠缠的非局域性质可用作许多量子信息处理任务的资源 3。量子非局域现象也可以出现在多体量子态鉴别中,这是量子通信中有效信息传输的重要过程。一般来说,正交量子态可以肯定地加以区分,而非正交量子态则无法做到这种区分。沿着这个思路,需要状态鉴别策略来至少以某个非零概率 4 – 7 鉴别非正交量子态。然而,当可用的测量仅限于 LOCC 测量 8 时,多体量子系统的某些正交态无法肯定地加以区分。由于在没有可能的测量限制时正交态总是能够被确定地区分,LOCC 测量的这种有限的鉴别能力揭示了量子态鉴别中固有的非局部现象。量子态鉴别的非局部现象也可能出现在鉴别多体量子系统的非正交态时;众所周知,某些非正交态不能仅使用 LOCC 9 – 11 进行最佳鉴别。因此,多体量子态 12 – 19 的最佳局部鉴别受到了广泛关注。然而,实现最佳局部鉴别仍然是一项具有挑战性的任务,因为很难对 LOCC 进行很好的数学表征。克服这一困难的一个有效方法是研究最佳局部鉴别的最大成功概率的可能上限。为了更好地理解最佳局部鉴别,建立实现这种上限的良好条件也很重要。最近,在二体量子态的局部最小误差鉴别中建立了最大成功概率的上限。此外,还给出了该上界饱和的必要充分条件20。在这里,我们考虑任意维数的多部分量子态之间的无歧义鉴别(UD)21 – 24,并为最佳局部鉴别的最大成功概率提供上限。此外,我们提供了实现该上界的必要充分条件。我们还建立了该上界饱和的必要充分条件。最后,我们使用多维多部分量子系统中的示例来说明我们的结果。本文组织如下。在“结果”部分,我们首先回顾多体量子系统中可分离算子和可分离测量的定义和一些性质。我们进一步回顾了UD的定义并提供了一些最优UD的有用性质(命题1)。作为本文的主要结果,我们给出了利用一类作用于多体希尔伯特空间的Hermitian算子实现最优局部鉴别的最大成功概率的上界(定理1)。此外,我们给出了Hermitian算子实现该上界的必要充分条件(定理2和推论1)。我们还建立了该上界饱和的必要充分条件(推论2)。我们通过多维多体量子系统中的例子说明了我们的结果(例子1和2)。在“方法”部分,我们提供了定理1的详细证明。在“讨论”部分,我们总结了我们的结果并讨论了与我们的成果相关的可能的未来工作。
我们研究了量子断层扫描和阴影断层扫描的问题,方法是对未知 d 维状态的各个相同副本进行测量。我们首先重新审视已知的量子断层扫描下限 [ HHJ + 17 ],精度为 ϵ(迹线距离),此时测量选择与先前观察到的结果无关,即,它们是非自适应的。我们通过适当分布之间的 χ 2 散度简洁地证明了这些结果。与之前的工作不同,我们不要求测量值由秩一运算符给出。当学习者使用具有恒定数量结果的测量值(例如,两个结果测量值)时,这会导致更强的下限。特别是,这严格建立了民间传说“泡利断层扫描”算法在样本复杂度方面的最优性。在非自适应情况下,我们还分别推导出使用任意和恒定结果测量学习秩为 r 的状态的 Ω ( r 2 d / ϵ 2 ) 和 Ω ( r 2 d 2 / ϵ 2 ) 的新界限。除了样本复杂度之外,学习量子态的一个具有实际意义的资源是所需的唯一测量设置的数量(即算法使用的不同测量的数量,每种测量可能具有任意数量的结果)。基于这种考虑,我们采用合适分布的 χ 2 散度测度集中来将我们的下限扩展到学习者从一组固定的 exp ( O ( d )) 个可能测量中执行可能的自适应测量的情况。这尤其意味着自适应性不会给我们带来使用可有效实现的单拷贝测量的任何优势。在目标是预测给定可观测量序列的期望值的情况下,我们也得到了类似的界限,这项任务称为阴影层析成像。最后,在可利用多项式大小电路实现的自适应单拷贝测量的情况下,我们证明了基于计算给定可观测量的样本均值的直接策略是最佳的。
量子态工程是量子光子技术的基石,主要依赖于自发参量下转换和四波混频,其中一个或两个泵浦光子自发衰减为一个光子对。这两种非线性效应都要求参与光子的动量守恒,这严重限制了所得量子态的多功能性。非线性超表面具有亚波长厚度,可以放宽这一限制;当与共振结合时,它们大大扩展了量子态工程的可能性。在这里,我们通过自发参量下转换在具有高品质因数、连续共振中准束缚态的半导体超表面中生成纠缠光子。通过增强量子真空场,我们的超表面在多个窄共振带内和宽光谱范围内增强了非简并纠缠光子的发射。在多个波长下泵浦的同一样品中的单个共振或多个共振可以产生多频量子态,包括簇态。这些特征表明超表面是量子信息的复杂状态的多功能来源。O
将经典数据加载到量子寄存器中是量子计算最重要的原语之一。虽然准备通用量子态的复杂性在量子比特的数量上呈指数级增长,但在许多实际任务中,要准备的状态具有特定的结构,可以更快地进行准备。在本文中,我们考虑可以通过(简化的)决策图有效表示的量子态,决策图是一种用于表示和分析布尔函数的多功能数据结构。我们设计了一种利用决策图结构来准备其相关量子态的算法。我们的算法的电路复杂度与决策图中的路径数量成线性关系。数值实验表明,当准备具有 n 3 个非零振幅的通用 n 量子比特状态时,我们的算法与最先进的算法相比,可将电路复杂度降低高达 31.85%。此外,对于具有稀疏决策图的状态,包括量子拜占庭协议的初始状态,我们的算法将受控 NOT 的数量减少了 86.61-99.9%。
区分两个光学点源是光学领域的一个重要课题,有望应用于天文观测和生物成像。然而,传统方法有一个称为瑞利诅咒 [1] 的缺陷,当两个点源彼此靠近时,很难区分它们。这个问题可以转化为估计两个点源的质心和分离的问题,瑞利诅咒表示当两个点源彼此靠近时难以估计分离。最近,Tsang 等人 [1] 在量子理论框架下研究了这个问题,并表明有可能以与它们相距较远时相同的精度估计两个靠近的点源之间的分离。此外,他们设计了一种称为空间模式解复用(SPADE)的测量方案,当预先知道两个点源的质心时,该方案可以达到这种精度。 SPADE 方案可以让我们准确估计分离,但它需要事先知道质心。因此,Grace 等人 [2] 提出了一个两步程序,其中首先要估计质心。与此同时,Parniak 等人 [3] 和 Bao 等人 [4] 研究了同时估计质心和分离,但他们没有考虑测量的最优性。
超快电子衍射和时间分辨串行晶体学是持续革命的基础,该革命旨在从原子层面捕捉分子结构动力学的细节。然而,大多数实验仅捕捉核波包的概率密度来确定时间相关的分子结构,而尚未访问完整的量子态。在这里,我们介绍了一种用于制备和从分子旋转波包进行超快相干衍射的框架,并建立了一种用于超快电子衍射的量子态断层扫描的新变体,以表征分子量子态。对于任意自由度的分子,重建密度矩阵(编码波包的振幅和相位)的能力将使我们能够从实验 x 射线或电子衍射数据重建量子分子电影。