冷却宏观物质的质量运动对其量子基态一直是物理界的目标,因为它被认为是迈向跨量子效应的量子效应的第一步,例如对宏观尺度观察到量子效应 - 例如,通过对空间量子量的限制,也有4个单个大型大型粒子 - 通过偏离已知相互作用的偏差并检查新颗粒的假设以搜索新物理学[5-9]。对量子状态中巨大颗粒的重力作用的研究引起了人们的关注[10,11],因为这可能是通过实验通过实验来照亮量子力学和重力之间的相互作用的一种方法。可以理解,可以通过通过不同的悬浮方式将机械振荡器从其环境中脱离环境来实现量子状态的较大宏观量[12]。捕获和冷却大型(大于µm长度)颗粒到量子基态的运动极具挑战性。光学诱捕技术适用于捕获亚微米尺寸的颗粒,并且在悬浮的验光力学中已经使用了线性反馈技术将其冷却纳米颗粒至其运动基态[13,14]。最近,达到了两种元模式的同时基态冷却[15],即使大型ligo镜的运动也通过反馈[16]在接近量子基态的附近冷却[16],除了许多夹紧机械系统[17] [17]。然而,捕获场中光子的吸收和后坐力充当耗散极限,该极限与捕获粒子半径的第六功率缩放[18],并且通过与黑色身体和捕获激光辐射的相互作用的光学左右量子态在光学左旋中存在坚硬的脱谐度限制[19] [19] [19]。
在工程(以及其他学科)的许多实际情况下,我们需要解决优化问题:我们想要一个最佳设计,我们想要一个最佳控制,等等。优化的主要问题之一是避免局部最大值(或最小值)。有助于解决此问题的技术之一是退火:每当我们发现自己处于可能的局部最大值时,我们都会以某种概率跳出并继续寻找真正的最优值。组织这种确定性优化的概率扰动的自然方法是使用量子效应。事实证明,量子退火通常比非量子退火效果好得多。量子退火是唯一使用量子效应的商用计算设备——D-Wave 计算机背后的主要技术。量子退火的效率取决于退火计划的正确选择,即描述扰动如何随时间减少的计划。根据经验,已经发现两种计划效果最好:幂律和指数计划。在本文中,我们通过证明这两个时间表确实是最优的(在某种合理的意义上),为这些实证成功提供了理论解释。
本卷中的论文是封面和标题页上引用的技术会议的一部分。论文经过编辑和会议计划委员会的筛选和审查。一些会议演讲可能无法发表。其他论文和演讲录音可在 SPIE 数字图书馆 SPIEDigitalLibrary.org 上在线获取。这些论文反映了作者的工作和思想,并按提交时的形式在此发布。出版商对信息的有效性或因依赖该信息而导致的任何结果概不负责。请使用以下格式引用这些会议记录中的材料:作者,“论文标题”,载于《生物学和生物光子学中的量子效应和测量技术》,由 Clarice Aiello、Sergey V. Polyakov、Paige Derr 编辑,SPIE 12863 的 Proc.,七位文章 CID 编号 (DD/MM/YYYY);(DOI URL)。 ISSN:1605-7422 ISSN:2410-9045(电子版) ISBN:9781510669857 ISBN:9781510669864(电子版) 由 SPIE 出版 PO Box 10, Bellingham, Washington 98227-0010 USA 电话 +1 360 676 3290(太平洋时间) SPIE.org 版权所有 © 2024 美国光学仪器工程师协会 (SPIE)。 SPIE 允许在支付费用后将本书中的材料复制用于内部或个人用途,或用于特定客户的内部或个人用途,但美国版权法授予的合理使用条款除外。 要获得使用和分享本卷中文章的许可,请访问 copyright.com 的版权许可中心。 除非获得出版商的书面许可,否则禁止以再版、转售、广告或促销为目的,或以任何形式系统或多次复制本书中的任何材料。由 Curran Associates, Inc. 在美国印刷,获得 SPIE 许可。
为了确保准确性,在绝对零的温度下进行实验,将背景噪声降低至几乎没有。KERR谐振器是关键的,因为它可以扩增通常无法观察到的量子效应。因为它可以对具有极高敏感性的两光孔信号做出响应,因此研究人员能够使用它以前所未有的精确度探索相过渡 - 传统设置简直无法实现。
我们引入了一种视觉表示,用于在选定的状态和后状态下产生基于纠缠的量子效应,使我们能够揭示看似不同的量子效应之间的等价性。我们展示了如何从单个或预先指定数量的物理粒子中实现任意数量的QUBIT的纠缠量子系统。然后,我们表明量子柴郡猫实验和Hardy的悖论的变化是等效的,并提出了一类实验,可以概括这两个实验。我们表明,投影运算符的产品的弱价值使我们能够获得每个操作运算符的弱价值,这意味着投影运算符产品的弱价值包括有关系统中弱值的全部信息。本质上,相互作用只能在一对属之间作用。我们展示了如何实现多方向相互作用量子位的量子系统,即以n> 2量子数的相互作用。通过这种方式,我们能够提出由纠缠状态相互作用组组成的独特量子系统。所提出的框架为探索从这种一般环境中出现的纠缠颗粒和量子现象的量子系统打开了门。关键字:纠缠,Hardy的悖论,多方相互作用,Quantum Computation,Quantum Cheshire Cat实验,Qubits
原子吸收能量时可以将其升级为激发态。这导致随机释放辐射。当几个原子闭合在一起时,可能会发生量子效应。当一个原子排放辐射时,这会影响附近的所有激发原子。许多原子的多余能量同时释放,并产生强烈的光闪光。这种效果称为超级效果,可用于产生比常规激光器发射频率更窄的激光器。
基于对少量原子的操纵或超低温下产生的量子效应的各种高灵敏度技术的开发,导致了大量量子器件的迅速普及,其中许多现在开始实现商业应用。同时,这些器件依靠从一个量子态到另一个量子态的离散状态变化,具有极高的灵敏度,使它们成为探测假定的超轻粒子或场与量子器件本身之间非常弱的相互作用的理想探测器。这导致它们在低能粒子物理领域得到广泛应用,以及近年来对与轴子、ALP 和许多其他暗物质候选者相关的低能相空间的快速探索(许多评论,包括 [1-4],都涵盖了这些应用)。这种敏感性似乎使这些设备不适合高能物理应用,因为高能物理应用的检测机制主要依赖于通过粒子与物质相互作用的准连续效应来检测和重建单个粒子的属性,将相互作用粒子对探测器主体原子进行多次电离的连续过程所沉积的电荷积分。要形成一个可以与热和统计波动区分开来的可用信号,需要进行大量这样的电离过程。此外,现有的探测器系列已经非常适合高分辨率跟踪、量热或粒子识别。在本文中,我们讨论了一些量子设备或系统,在这些量子设备或系统中,量子效应发挥了重要作用,以期将它们应用于粒子跟踪、粒子识别或量热领域。我们特别关注那些可能产生目前难以获得的信息的应用,或者现有技术的某些边界条件或
● 量子比特 - 量子信息的基本单位,是经典二进制比特的量子版本。它可以存在于叠加态 - 0 到 1 之间的任何状态 ● 量子比特保真度 - 量子比特保持相干/可操作的时间 ● 量子效应 - 叠加、干涉和纠缠 ● NISQ - 嘈杂的中尺度量子技术,通常指现代非常嘈杂的量子计算机 ● QASM - 用于编程量子计算机的量子组装 ● 量子霸权 - 证明可编程量子设备可以解决经典计算机无法在任何可行时间内解决的问题(任何问题) ● 量子优势 - 与霸权相同,但用于有用的应用
Lester Ingber 教授,博士 摘要:背景:自 1980 年左右以来,大脑皮层相互作用的模型——大脑皮层相互作用的统计力学 (SMNI) 已成功计算了许多实验现象,包括使用重要性采样代码自适应模拟退火 (ASA) 拟合注意力任务中的脑电图 (EEG) 数据。SMNI 模型是在经典路径积分的背景下开发的,它提供了直观的见解以及直接的数值优势,例如,使用有效作用作为数据参数拟合的成本/目标函数。目标:先前的作者已经将情感 EEG 数据拟合到神经网络模型中。该项目旨在使用基于物理和生物学的模型来拟合相同的数据。先前的研究表明,注意力状态的 EEG 拟合有所改善;该项目将这些方法扩展到情感状态。方法:路径积分用于经典和量子背景。经典路径积分用于定义成本/目标函数以拟合数据,量子路径积分用于推导在磁矢量势存在下 Ca 离子波的闭式解析表达式,该磁矢量势由高度同步的神经元放电产生,从而产生 EEG。ASA 用于拟合 EEG 数据。结果:该研究的数学物理和计算机部分是成功的,因为使用这些模型拟合 EEG 数据的成本/目标函数与其他作者发表的先前研究一致。但是,由于 SMNI 模型包括这些量子效应,这是继续研究这些问题的另一个原因。这里的结果是一致的,而不是比以前使用神经网络模型的工作更好,尽管这里只使用了一个参数,而不是以前在这些数据上使用的多个过滤器和内核。结论:虽然这些量子效应具有高度推测性,但明确的计算表明它们与实验数据一致,至少到目前为止是这样。当前的超级计算机项目将此模型扩展到情感/情绪数据。几位作者在单个电极位置使用神经网络方法的结果显示出一定的预测能力;这里给出的结果与其他结果一致。然而,由于 SMNI 模型包括这些量子效应,这是继续研究这些问题的另一个原因。关键词:量子力学;路径积分;重要性抽样;神经科学 2022 年 1 月 11 日收到;2022 年 1 月 23 日修订;2022 年 1 月 25 日接受 © 作者 2022。在 www.questjournals.org 上以开放获取方式出版