频带级联激光器(ICL)由于低功耗和与硅光子整合的兼容性,尤其是对于痕量气体传感,因此在中红外应用中变得越来越有价值。ICL已在3 - 6 L m范围内证明了室温连续波动,其性能在3.3 L m左右。在更长波长下ICL性能的关键因素是光损失,即是由间隔带过渡引起的。这些损失随着活性区域的孔浓度而增加,从而导致ICL中光损耗的电流依赖性明显。传统方法从参数(例如斜率效率或阈值电流)中从长度依赖性变化中推断出光损失需要恒定光损耗。在这项研究中,我们提出了一种直接的光学传输测量技术,以确定波导损耗。我们的实验证实,随着电流密度,大大增加了波导损失,直接影响ICL的量子效率。与传统方法相比,这种方法提供了对光损失的精确评估,并具有功能替代性,可以解决假设恒定损失的局限性,并为各种波长提供了对ICL性能的洞察力。
在材料科学中,开发具有聚集诱导发射的热活化延迟荧光 (TADF) 发射器对于构建高效电致发光器件至关重要。在此,基于高度扭曲的强吸电子受体 (A) 硫芴 (SF) 修饰的酮 (CO) 和芳胺供体 (D),通过简单的合成程序高产率设计和制备了两种具有迷人聚集诱导发射的不对称 TADF 发射器 SFCOCz 和 SFCODPAC。所得分子具有高达 73% 的光致发光量子产率和 0.03 eV 的小单重态-三重态分裂;令人惊讶的是,由这些发射器促进的高效非掺杂和掺杂 TADF 有机发光二极管 (OLED) 显示出 5,598 和 11,595 cd m − 2 的高亮度、16.8 和 35.6 cd/A 的电流效率 (CE)、9.1 和 29.8 lm/W 的功率效率 (PE) 以及 7.5% 和 15.9% 的外部量子效率 (EQE)。这项工作为探索高效的 TADF 发射器提供了一个具体的例子,这对同时促进具有高亮度和出色效率的 TADF OLED 的发展非常有利和令人鼓舞。
1。简介。近几十年来,随着量子数据处理技术的促进,人们对能够在特定频率下以高量子效率发射的非古典光源越来越感兴趣[1]。实施此类来源的最有希望的方法之一是使用单个半导体量子点(QDS)[1-4]。材料系统的一系列允许基于QD的单光子源(SP)在宽广泛的范围内创建单光子源(SPS),从紫外线附近到电信C波段[5-9]。对于基于费用的量子加密应用,在电信C波段接近1.55μm中运行的SPS特别感兴趣,这是由于纤维中的光学损失最小而引起的[3,10]。当前,基于微孔子中的QD,在该光谱范围内获得单光子发射的主要方法。第一种方法涉及在INP屏障中生长INAS QD [5,11-13],而第二种方法涉及直接在GAAS子仪上直接在INGAAS METAAS METAAS METAS-METAS-METAS-METAS-METAS-METAS-METAS-METAS-METAS QD上生长INAS QD [14-16]。然而,在INP
提出了两个多弹性热激活的延迟荧光(MR-TADF)发射器,并显示了如何进一步的深蓝色MR-TADF Emitter(didobna-n)的blueShifts,blueshifts,并缩小产生新的近乎UV的MR-TADDF EMitter,MESB-DIDOBNA-N,MESB-DIDOBNA,MESB-DIDOBNA-N。didobna-n发出明亮的蓝光(𝚽 pl = 444 nm,fwhm = 64 nm,𝚽 pl = 81%,𝝉 d = 23 ms,tspo1中的1.5 wt%)。基于此扭曲的MR-TADF化合物的深蓝色有机发光二极管(OLED)显示,CIE Y的设备为0.073的设备的最大最大外部量子效率(EQE MAX)为15.3%。融合的平面MR-TADF发射极,MESB-DIDOBNA-N显示出近量的较小和窄带(𝝀 pl = 402 nm,fWHM = 19 nm,𝚽 pl = 74.7%,𝝉 d = 133 ms,TSPO1中的1.5 wt%)。掺有共同主持人的MESB-DIDOBNA-N最好的OLED显示出近紫外OLED的最高效率为16.2%。以0.049的CIE坐标为0.049,该设备还显示了迄今为止MR-TADF OLED的最蓝EL。
摘要:将新材料作为硅在光子设备中的应用一直是科学界的关注中心。二维(2D)材料表现出很大的能力,可以替代这种障碍。石墨烯由于其独特的特性(例如高迁移率和光学透明度),除了灵活性,稳健性和环境稳定性外,还具有光子学和光电子学发光的2D材料之一。据报道,有几种基于石墨烯的光电探测器,具有与各种能量热电,电磁和压电设备集成的能力。但是,由于其带隙限制,原始石墨烯不适合在红外区域检测合理信号。在这项工作中,使用石墨烯/金属插入的石墨烯光电探测器证明了基于石墨烯的近红外检测。使用化学蒸气沉积(CVD)在Cu底物上生长插烯石墨烯,并将层湿转移到Si/SiO2底物上。已将锥形铝微电极用于电触点,以改善照明过程中光生载体的检测。证明了红外检测,在室温下测试了反应性和量子效率,并解释了光生的机理。
III-V 族胶体量子点 (CQDs) 是用于光电应用的有前途的材料,因为它们避免了重金属,同时实现了从可见光到红外 (IR) 的吸收。然而,III-V CQDs 的共价性质要求开发新的钝化策略来制造用于光电器件的导电 CQD 固体:这项工作表明,先前在 II-VI 和 IV-VI 量子点中开发的使用单个配体的配体交换不能完全钝化 CQD,并且这会降低设备效率。在密度泛函理论 (DFT) 模拟的指导下,这项工作开发了一种共钝化策略来制造砷化铟 CQD 光电探测器,该方法采用 X 型甲基乙酸铵 (MaAc) 和 Z 型配体 InBr 3 的组合。这种方法可保持电荷载流子迁移率并改善钝化效果,斯托克斯位移减少 25%,第一激子吸收线宽随时间推移的增宽率降低四倍,并使光致发光 (PL) 寿命增加一倍。所得器件在 950 nm 处显示 37% 的外部量子效率 (EQE),这是 InAs CQD 光电探测器报告的最高值。
摘要:卤化物钙钛矿发光二极管 (PeLED) 在下一代显示技术中具有巨大应用潜力。然而,由于高效率需要非常薄的传输层,而这些传输层在溶液处理过程中通常会因不当的润湿和干燥而出现空间不均匀性,因此扩大规模将具有挑战性。在这里,我们展示了如何使用通过原子层沉积生长的薄 Al 2 O 3 层优先覆盖不完美空穴传输层沉积的区域并与有机传输层形成混合复合材料,从而使空穴传导和注入能够通过有机空穴传输层持续进行。这具有减少异质结处非辐射复合和提高载流子选择性的双重效果,我们推断这是由于抑制了氧化铟锡和钙钛矿层之间的直接接触。我们观察到我们的 pin LED 中的电致发光外部量子效率立即从平均 9.8% 提高到 13.5%,冠军效率为 15.0%。该技术使用工业上可用的设备,可以很容易地扩展到更大的区域并纳入薄膜光伏电池等其他应用中。关键词:钙钛矿、发光二极管、原子层沉积、区域选择性、效率
摘要:具有宽带响应的高效率和高速光电遗传学正在扮演波长划分多重光学通信的关键作用。硅平台上的锗光电轨道具有潜在的成本优势,这是由于与基于硅的电子电路的整体集成兼容性,用于信号扩增和处理。在本文中,我们报告了通过光子晶体中的引导模式共振启用的正常发病率,该晶粒光电探测器成功地解决了量子效率,波长覆盖率和带宽需求之间的折衷,这是一个通常由常规光电检测器正常发病率操作的缺点。谐振光子晶体结构旨在支持目标波长范围内的多个共振。固有的吸收层厚度为350 nm,该设备在1550 nm处的高外部量子效率高50%,并且在整个C波段中的增强率约为300%。使用14μm的MESA直径,制造的设备表现出33 dB的33 GHz带宽,并以最高56 GBP的比特速率获得了清晰的眼图。这项工作提供了
蓝色有机发光二极管(OLED)技术需要进一步的进步,而超荧光(HF)OLED已成为解决稳定性和颜色纯度问题的有希望的解决方案。影响HF-OLEDS性能的关键因素是Förster共振能量转移(FRET)。在这里,我们使用对比鲜明激活的延迟荧光(TADF)敏化剂研究了蓝色HF-OLED的FRET机制。我们证明,敏化剂的分子结构深刻影响了FRET效率,以螺旋罗连接的TADF Molecule Acrsa为例,TADF Molecule acrsa抑制了二面 - 角度的不均匀性和任何低能源构象异构体,这些构象异构体对末期发射极端发射极小。因此,可以将FRET效率优化至近100%。此外,我们演示了近乎理想的敏化剂的性质与理想的TADF发射器的分歧。与非HF设备相比,使用绿色敏化剂的蓝色HF-oleds具有外部量子效率的三倍(约30%)。这种新的理解为敏化剂设计打开了途径,表明绿色敏化器可以有效地泵送蓝色端子发射器,从而减少设备激素激素能量并改善蓝色OLED稳定性。
半Quantum秘密共享(SQSS)协议作为量子安全多方计算中的基本框架,具有不需要所有用户具有复杂量子设备的优势。但是,当前的SQSS协议主要迎合两部分方案,很少有适用于多方场景的协议。此外,多方SQSS协议面临的限制,例如低量子效率和无法共享确定性的秘密信息。为了解决这一差距,本文提出了基于多粒子GHz状态的多方SQSS协议。在此协议中,量子用户可以将预定的秘密信息分配给具有有限量子capabilies的多个古典用户,并且只有通过所有经典用户之间的相互合作,才能重建正确的秘密信息。通过利用测量 - 反射操作,传输的多粒子GHz状态都可以贡献键,从而改善了传输颗粒的利用。然后,安全分析表明该协议对普遍的外部和内部威胁的弹性。此外,使用IBM Qiskit,我们进行量子电路模拟来验证协议的准确性和可行性。最后,与类似的研究相比,所提出的协议在协议可伸缩性,Qubit效率和共享消息类型方面具有优势。