摘要:人们长期以来一直在寻找设想中的量子互联网节点的物理平台。我们在此提出了这样一个平台,以及一个概念简单、实验简单的量子信息处理方案,该方案在多个晶相量子点系统中实现。我们引入了新的定位量子比特,描述了一种构建全光量子门通用集的方法,并模拟了它们在包括退相干源在内的实际结构中的性能。我们的结果表明,定位量子比特对主要退相干机制具有鲁棒性,实际的单量子比特门保真度超过 99.9%。我们的方案为构建具有内置光子接口的多量子比特固态量子寄存器铺平了道路,这是即将到来的量子互联网的关键构建块。关键词:光学活性纳米线量子点、晶相量子结构、定位量子比特、光量子控制、绝热量曼技术
纳米结构中的时间依赖性现象对理解和控制其动态行为的兴趣越来越大。应用程序之一是量子计算,其中可以通过以可编程方式操纵粒子(Qubits)来以平行方式进行某种信息处理[1,2]。在某些物理系统中已成功证明了各种量子算法[3],并且在整合实用量子计算机所需的大量Qubits方面已经取得了进展,尤其是在SolidStatesystateSystateSystems中[4-9]。尽管跨性量表computermayrequire的巨大研究活动,但量子信息研究已经成功,因为提供了一种通用语言来与跨学科研究人员进行交流。量子型cannowbediscussedintermsofquantuminenformination Theory,它促进了物理学家,化学家,数学家和量子工程师之间的讨论。通常,任何将初始状态(密度算子)更改为最终状态的量子过程都可以通过完全阳性的痕量保护映射来描述[1]。对映射的知识用于定义量子信息过程。相同的映射提供了无脑摄取的iNteractractions。Quantumcomputation isbasedonanassemblyofunitaryoperations, whichcanbedecomposedintosomefundamental unitary operations on one- or two- qubit subsystems.因此,问题可以简化为几种单一操作员。实际上,现实的操作受到与量子系统耦合的环境的影响和降级,因此映射成为一个非整体量子过程[10]。降低系统相干性的两个重要量子过程是耗散的,其中量子系统的能量与环境交换,并进行dephasing,其中量子系统的相位由环境随机化。前者通常以纵向松弛时间(T 1)为特征,而后者则以横向松弛时间(T 2)为特征。此外,在与测量设备耦合下,测量过程也可以视为量子过程。量子计算需要一组完整的量子过程,以初始化所有量子位,执行一个和双Quit的单一操作,测量每个量子状态并避免出现非单一操作的错误[11]。纳米规模的固态设备中的量子动力学对于控制具有可编程量子过程序列的定制结构中的某些单个量子具有吸引力。具有约瑟夫森连接的超导电路成功证明了一个和两Q量的操作,具有高度的相干性[12,13]。可以通过设计设备参数和适当的脉冲序列来很好地与环境隔离。另一个系统是半导体量子点(QD),它提供可以用外部电压控制的人工电子状态。由于可以在半导体装置中设计和实际形成原子样电子状态,因此QD通常称为人工原子[14-17]。电子状态的高可控性可用于研究人工量子系统的动态行为以及量子计算系统的动态行为。有两个主要选择量子基础:单个QD中的自由度自由度和双量子点(DQD)中的电荷(轨道)自由度。在本文中,我们将回顾一些有关QD中的旋转和充电量子的研究,这些研究与量子信息处理和实际设备背后的物理现象有关。
注意:该报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府,或其任何机构,或其任何雇员,或其任何承包商,分包商或其雇员都不会对任何信息的准确性,完整性或有用性,设备,产品或程序所披露或代表其使用的任何法律责任或责任,或承担任何法律责任或责任。在此引用任何特定的商业产品,流程或服务,商标,制造商或其他任何特定的商业产品,不一定构成或暗示其认可,建议或受到美国政府,任何代理机构或其承包商或其承包商或分包商的认可,建议或偏爱。此处表达的观点和意见不一定陈述或反映美国政府,其任何机构或其任何承包商的观点和意见。
抽象的有机 - 内有机卤化物钙钛矿由于其特殊的光电特性及其在钙钛矿太阳能电池(PSC)中的成功应用而被深入研究为潜在的光伏材料。然而,到目前为止,PSC中仍然存在大量缺陷状态,并且不利于其功率转换效率(PCE)和稳定性。在这里,提出了将单晶石墨烯量子点(GQD)纳入钙钛矿膜中的有效策略,以钝化缺陷状态。有趣的是,与对照钙钛矿膜相比,GQD修饰的钙钛矿膜表现出更纯净的相结构,更高的形态质量和更高的导电性。基于GQD修饰的钙钛矿膜,由GQD掺入的所有优点导致了快速的载体分离和运输,长期载体寿命和低非辐射重组。结果,这种PSC显示出所有光伏参数的增加,并且与对照PSC相比,其PCE显示出超过20%的增强。此外,这种新颖的PSC被证明具有对热和水分的长期稳定性和抵抗力。我们的发现提供了有关如何钝化缺陷状态并增强钙钛矿中的电导率的洞察力,并为它们进一步探索以实现更高的光伏性能铺平了道路。
可以将物联网(IoT)描述为一组对象,这些对象具有一个或多个传感器,软件,发射器,接收器和许多其他仪器,并且可以通过Internet或通信网络之间的彼此和其他设备/系统进行通信。它在许多不同的领域中都有应用程序,包括可穿戴电容器,智能家居设备,零售,办公室,工作地点和面具。1组成IoT设备的主要组件是与其他“事物”,切换到控制以及为这些设备供电的电源的发射器和接收器。量子点(QD)在过去几十年中由于其特性而引起了很多关注。其中一些特性是可调的带隙,狭窄的发射宽度,高稳定性,电致发光(EL),光发光(PL)和高PL量子产率(PLQY),这些属性(PLQY)是用于诸如光电旋转,生物医学,光效率二氧化碳,光diodes,Photodetectors等不同应用的所需属性。2
©作者2025。开放访问。本文根据创意共享归因许可4.0(CC By 4.0)获得许可。,只要您对原始作者和来源提供适当的信用,允许以任何媒介或格式使用,共享,适应,分发和复制,并提供了与Creative Commons许可证的链接,并指出是否进行了更改。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
PBS量子点(PBS-QD)是新一代LED中最好的候选者之一。当PBS-QD暴露于光谱时,Valence带(VB)中的电子会激发到传导带(CB)。激发的电子然后从CB返回到VB,并通过发光释放额外的能量。电子返回VB使得可以重复光吸收发射圆。如果PBS-QD的尺寸小于Bohr Magneton Radius(PMR),则电子的概率返回到VB。这导致了发光二极管(LED)中名为量子点闪烁(QDB)的现象,这是不可取的。在这项研究中,已经提出了一种新方法,在该方法中,添加具有适当带边缘的半导体壳的PBS-QD的金属底物可以提高QD领导的PBS-QDS效率并克服QDB问题。©2024 SPC(SAMI Publishing Company),《亚洲绿色化学杂志》,用于非商业目的。关键字PBS-QDS眨眼保护壳LED PB CDSE
wroclaw,波兰量子点(QD)目前用于量子技术和量子信息的许多领域。栅极定义的QD,通过在量子井上施加电极而产生的QD可以通过调整应用于电极的电势来操纵其性质。高质量的多数设备[1]。但是,这种点通常只能同时限制一种类型的载体,这意味着它们不能直接与光线搭配,从而将信息与飞行的光子Qubits交换。相反,自组装的QD可以限制电子和孔,因此可以光学活跃。尽管比栅极定义的QD更容易制造,但是它们的性质往往更难控制,因为它们的布置和定义特征(大小,形状和化学成分的细节)的特征是它们的特征。因此,需要将两种QD的优点,即,具有光学活性的QD之间易于调节的QD属性和受控耦合。
摘要:用于癌症疗法的大量新兴抗体 - 药物结合物(ADC)导致了一个显着的市场“繁荣”,引起了全球关注。尽管ADC对研究人员提出了巨大挑战,特别是关于鉴定合适的抗体,接头和有效载荷组合的挑战,但截至2021年9月,已经获得了11个ADC的批准,自2017年以来,其中8个就获得了八项批准。对这种治疗方法的乐观态度是明显的,尽管2020年共同的1920年大流行是ADC竞技场交易和合作伙伴关系的里程碑,这表明大型制药公司仍然有很大的兴趣。在此,我们通过关注FDA批准的人的特征来回顾ADC的热情,并就领域的前进方向提出一些想法。