[研究背景] 在当今的超老龄化社会中,因疾病或受伤而患有骨骼和关节疾病的人数增加正在成为一个问题,对于植入体内进行治疗的生物材料的需求日益增加。金属材料具有强度与延展性优异的平衡性,且机械可靠性高,因此被广泛用作必须支撑大负荷的骨替代植入物。 植入物需要具有优异的耐磨性和耐腐蚀性。但由于它是一种高强度的金属材料,其力学性能一般与柔韧的活骨有显著差异,而且其特别高的杨氏模量是有问题的。当植入物的杨氏模量远高于骨骼时,大部分力会施加在植入物上而不是周围的骨骼上(这种现象称为应力屏蔽),这会导致骨质萎缩、骨矿物质密度降低和骨折风险增加。因此,近年来,需要开发具有与活骨相当的低杨氏模量的新型金属材料。 临床上最常用的生物医学金属材料是价格低廉的不锈钢SUS316L、耐磨性优良的CoCr合金、杨氏模量相对较低的Ti(钛)合金。然而,不锈钢和现有的钴铬合金的杨氏模量大约比活骨高10倍。虽然存在杨氏模量较低的Ti合金,但其杨氏模量高于活骨,且存在耐磨性低的问题。目前,很少有金属材料能具有与活体骨骼相当的杨氏模量,同时还具有优异的耐磨性和耐腐蚀性。特别是,低杨氏模量这一重要的机械性能通常与高耐磨性之间存在权衡关系,开发出一种兼具这些特性的新型合金一直很困难。 另一方面,在尖端医疗中使用的超弹性合金中,表现出约8%超弹性应变的NiTi(镍钛)合金的应用最为广泛。然而,NiTi合金中含有较高的Ni元素,人们担心其可能会引起过敏反应。为此,人们开发出了不含Ni的Ti基超弹性合金,但其超弹性应变仅为NiTi合金的一半左右。 【主要发现】
摘要 材料喷射 (MJT) 是一种增材制造工艺,其中构建材料以单个液滴的形式沉积。由于 MJT 具有潜在的高打印速度以及低设备和原材料成本,因此最近已扩展到金属加工领域。为了实现完整的 3D 功能,需要支撑结构,打印作业后必须将其移除。我们研究了水溶性盐和合适的喷嘴材料,以实现 MJT 工艺中的熔盐打印。在这里,熔体和喷嘴的润湿特性至关重要,因为明显的润湿会影响液滴的喷射。建立了一个固着滴接触角测试台,以评估三种盐或盐混合物(NaCl、KCl-NaCl 和 NaCl-Na 2 CO 3 )在六种不同喷嘴材料(各种陶瓷和石墨)(即潜在喷嘴材料)上的润湿特性。结果表明,除石墨上的 KCl-NaCl 外,大多数检查样品都具有较高的润湿趋势。这些材料在 MJT 测试台上的应用证实了我们研究结果的可行性。
以及备件库存短缺。该项目既是对 EOS IN738 的测试,也是 AM 在旋转涡轮机械部件中的首次已知使用测试。Precision ADM 医疗和工业销售及业务开发总监 Derek VanDenDreissche(B,SC)表示:“得益于 EOS 技术和 EOS IN738 材料,我们成功生产出涡轮发动机叶片,该叶片的转速达到标准运行转速的 110%,并可承受涡轮机产生的高达 1,700 华氏度的高温。这些测试不仅展示了有史以来第一个成功的 3D 打印涡轮发动机叶片,而且 EOS IN738 可以承受涡轮机械应用所需的高热量和应力。简而言之,EOS IN738 对该项目的成功至关重要。”EOS K500:经济高效、坚固且耐腐蚀
◆关于研究内容Shimokawa Kohei,Tohoku大学金属材料研究所高级和进化研究部电话:022-215-2390电子邮件:Kohei.shimokawa.b7@tohoku.ac.ac.ac.ac.ac.ac.ac.jp教授,结构控制材料材料研究部,TOHOKU CORIPESS RESICATION,TOHIM RESICATION-METAR RESSICY nimr:0.02222222222内戈亚技术学院工程研究生院Frontier研究所U.Ac.JP教授电话:052-735-5189电子邮件:masanobu@nitech.ac.ac.ac.jp◆关于报告信息计划办公室公共关系团队,Tohoku大学金属材料研究所传真:022-215-2482电子邮件:pro-adm.tohoku.ac.jp计划和公共关系部,纳戈亚技术研究所电话:052-735-5647电子邮件:pr@adm.nitech.ac.ac.ac.ac.ac.ac.ac.ac.ac.ac.ac.jp公共关系部,日本科学和技术机构电话:03-5214-8404-14-32-14 33-22 .jp(关于JST业务)Oya Katsu,日本科学与技术局的未来创建研发促进部电话:03-3512-3543电子邮件:alca@jst.go.jp
摘要:非晶态金属 (AM),特别是非晶态铁磁金属,被认为是一种令人满意的磁性材料,可用于开发高效、高功率密度的电磁设备,例如电机和变压器,这得益于其各种优点,例如合理的低功耗和中高频下的非常高的磁导率。然而,这些材料的特性尚未得到全面研究,这限制了其在具有通常具有旋转和非正弦特征的磁通密度的高性能电机中的应用前景。在不同磁化下对 AM 进行适当的表征是将这些材料用于电机的基础之一。本文旨在广泛概述在存在各种磁化模式(特别是旋转磁化)的情况下的 AM 特性测量技术,以及用于先进电机设计和分析的 AM 特性建模方法。还讨论了可能的未来研究任务,以进一步改进 AM 应用。
研究开发、生产、销售通讯产品、移动通信终端产品、高新技 术产品,并提供相关服务,从事集成电路技术领域内的技术开 发、技术咨询、技术服务、技术转让,微电子产品及金属材料 的销售,卫星地面接收设施安装。 【依法须经批准的项目,经 相关部门批准后方可开展经营活动】
脱位密度。那些不同的方法不观察到相同类型的位错,即统计存储的位错(SSD)和/或几何必需的脱位(GND)。有些是直接测量技术,例如ECCI和TEM成像,而其他是非方向方法,即HR-EBSD和XRD测量。因此,提出了使用这四种技术在未变形和变形的双链钢上获得的测量值的定量比较。对于低变形,位错密度很小(成像方法相当性能,而XRD 1- 5×10 13 m - 2),测量值的不确定性水平高。HR-EBSD测量结果表明,结果与这些变形水平的其他方法非常吻合。对于较高的变形水平(上面的脱位密度),成像方法不再相关,因此1 - 3×10 14 m - 2
金属变形是材料科学领域最热门的研究课题之一,通过特定的变形过程控制金属材料可使其表现出预期的使用性能和设计配置。金属材料及其构件的应用在过去人类社会与文明的发展中发挥了极其重要的作用,在未来社会文明的可持续发展中仍发挥着不可替代的作用。在传统材料及其变形方法的基础上进行优化,或开发新型金属材料和变形工艺,对社会发展至关重要。因此,本期《金属变形过程:基础与应用》专刊的内容不仅关注传统的金属结构材料,还关注一些新型金属材料(如高温合金、高熵合金等),以及上述材料变形行为的理论与应用研究。
尽管对二维(2D)材料的痕迹进行了几十年的研究,但可以确定其文艺复兴时期,即何时由Geim和Novoselov隔离并鉴于单层石墨烯,后者被授予诺贝尔物理学的发现。1,2从那时起,石墨烯的令人难以置信的特性启发了许多研究者,研究了广泛的可能应用。认识到,这种不同的特性与2D布置齐头并进,并加速了对其他2D材料的探索,其中包括金属基材料和无金属材料。近年来,由于无金属材料的材料成本较低,因此对2D金属材料的研究变得越来越宽。在此类材料的各种应用中,光催化是一个非常有吸引力的领域,它融入了“绿色化学”现代哲学的大多数方面,在该哲学中,将可持续性标准整合到化学生产中是核心使命。在这种情况下,利用太阳能的能量来触发化学转化,以代替更多能源密集型和较少的生态生产方案,这是迈向可持续性的重要一步。3,4尽管有希望的发现和对使用2D金属材料作为有机转化的光催化剂的高期望,但这些有趣的结构的全部潜力尚未被发现,并且了解结构/活动关系仍然需要
选择有潜力应用于未来装甲的材料作为先进材料 ・陶瓷材料 与传统的无压烧结和热压方法相比,静态材料特性如弯曲强度、硬度等。关注脉冲电流压力(放电等离子体)烧结法,提高了静电性能! ・有色金属材料 密度约为黑色金属材料的1/5,比传统材料强度更高 高强度镁合金 低杨氏模量和高强度钛合金 钛合金