2.1 简介 3 2.2 解决方案 3 2.3 任务场景 4 3.1 技术概述 6 3.2 设计和优化 6 3.2.1 金属板合金的选择 7 3.2.2 金属板厚度的选择 7 3.2.3 充气压力的选择 7 3.2.4 二维金属板形状的选择 7 3.2.5 设计预测和优化的有限元应力分析方法 8 3.2.6 制造技术 8 3.2.7 充气技术 9 3.2.8 耐磨性 9 3.2.9 目标储存温度和压力的选择 9 3.2.10 风化层热性能验证 10 3.2.11 抗热梯度 12 3.2.12 埋藏深度的选择 12 3.3 测试方法 13 3.4 利益相关者13 3.5 风险管理 14 4.1 概述 16 4.2 验证测试 16 4.2.1 标准化充气压力 16 4.2.3 真空测试 18 4.2.4 低温储存 18 4.2.5 微陨石撞击与金属可修复性 19 4.2.7 焊接可靠性 20 4.2.8 强度测试 21 4.2.8 退火对碳钢的影响 21 5.1 未来发展路径 23 5.1.1 进一步的可靠性测试 23 5.1.2 大型模块测试的可扩展性 23 5.1.3 月球上焊接 23 5.1.4 Artemis 基地低温系统集成 23 5.1.5 地下模块的挖掘/安装 23 5.1.6 优化热管理低温学 24 5.1.7 NASA 组织 Artemis 基地资源的热管理 24 5.1.8 优化 METALS 几何结构以实现高效填充 24 5.1.9 传热实验 24 6.1 项目领导与管理 25
高效电力驱动项目启动:德累斯顿弗劳恩霍夫 IFAM 研究所开发混合金属板 德累斯顿弗劳恩霍夫制造技术与先进材料研究所 (IFAM) 正在与合作伙伴合作开展一个新项目,开发用于电力驱动的混合电气板。在西门子的协调下,“InnoBlech”项目正在基于增材丝网印刷技术开发用于电力驱动的创新电气板。其他合作伙伴包括达姆施塔特工业大学、Ford-Werke GmbH 和 EKRA Automatisierungs GmbH 公司。“InnoBlech”的核心开发目标是为磁阻或 PMSM/IPM 电机的转子提供机械和磁性改进的金属板封装。该项目基于资源高效的 3D 丝网印刷工艺,旨在有针对性地全面改善金属板封装的机械和磁性。丝网印刷工艺不仅可以使电工薄板更薄、更高效,而且可以将不同的材料或合金并排或叠放在一起。这样,电工薄板就可以采用新的设计,并制造出具有局部适应的磁性能的薄板。该技术方法是在丝网印刷工艺中通过共烧结将不同的软磁材料相互结合或将软磁和非磁性铁基合金结合在一起。为此,将进一步开发已以丝网印刷为基础开发的铁基混合材料,以用于优化的电驱动混合转子叠片,特别是磁阻和永磁同步 (PMSM、IPM) 电机。具体来说,将解决以下具体开发目标:
电粘附 (EA) 效应,也称为 Johnsen - Rahbek 效应 (JR 效应),由两位丹麦工程师 Frederik Alfred Johnsen 和 Knud Rahbek 在 20 世纪 20 年代首次报告。[1,2] 他们观察到,当将多孔电解质材料夹在两块高电位金属板之间时,会对其中一块金属板产生粘附力。在背面电极上施加高电压后,两种绝缘材料之间就会发生 EA 效应,并且由于极化,板会相互粘附。永久极化是由内部分子偶极子引起的,而诱导极化则是由高电场引起的。[3] 在频率相关的诱导极化中,界面极化和取向极化是 EA 效应的原因。[4,5] 施加电压时,由于等势线的形成,相反的电极会感受到麦克斯韦张量力,如图 1 所示。 θ 分量(E θ)的等势场可以用麦克斯韦方程表示,如公式(1)所示。
摘要圆形微带贴片天线(CMPA)的增益和带宽增强的设计已通过使用用作超级材料的矩形金属板中的圆形凹槽进行了提出。提出的概念是独特的,并且简单地作为增强增益和带宽的灵活方法。矩形形状的泡沫间隔剂已用于提供机械支撑,以放置优化的凹槽蚀刻矩形金属板超材。拟议的天线提供了约35.5%的阻抗匹配带宽在8.45 GHz至12 GHz之间的带宽,总带宽为3.55 GHz,而传统的圆形贴片为9.95 GHz,几乎显示了势不足的带宽(480 MHz)的4.8%,大约显示了4.8%的抗衡。峰值增益为7dbi。除了增强的带宽特征co-pol。在整个操作频段中保持10DBI的峰值增益。与常规CMPA相比,实现了3DBI增益。对于实验验证,已经使用市售介电底物制造了一组天线原型。测得的结果显示与模拟预测相似。关键字:带宽,圆形贴片天线,圆形凹槽,超隔板
Digimatic 外径千分尺 防冷却液千分尺 高精度 Digimatic 千分尺 Quickmike ABSOLUTE Digimatic 千分尺 外径千分尺 卡尺式千分尺 螺纹千分尺 齿轮千分尺 盘形千分尺 金属板千分尺 花键千分尺 管形千分尺 点千分尺 压接高度千分尺 V 型砧千分尺 刀片千分尺 Uni-Mike QuantuMike 内径千分尺 罐缝千分尺 轮毂千分尺 线材千分尺 极限千分尺 指示千分尺 卡尺 表盘卡尺 槽形千分尺 Quick-Mini
3) 在开始生产之前,请务必使用与您打算在最终生产中使用的相同规格的金属板厚度和衬管密度的较小部件进行“预测试”。衬管的不同密度和厚度可能需要调整焊接计时器设置。例如:更重的规格钢、更厚的衬管、更高密度的衬管和/或更长的夹销可能需要更长的焊接时间。为确保万无一失,在进入“成品生产”之前,请务必预先测试任何调整。但是,只有当材料变化导致焊接效率低下或焊接质量差时,才更改焊接计时器设置。
本 CWA 介绍了一种新的单试样试验方法,用于确定抗裂指数 (CRI),该指数能够对高强度金属板的抗裂纹扩展能力进行分类。该指数来自预裂纹或尖锐缺口试样的拉伸试验中获得的断裂能。由于 CRI 和 EWF 之间具有良好的相关性,因此建议将 CRI 作为估算 AHSS 开裂敏感性的有用参数 [14]。该程序快速简单,与传统拉伸试验相当,可用作质量控制和/或材料排名的额外常规试验。CRI 标准源自 EWF 方法,采用了一种简化的方法,需要测试更少的试样并减少后处理工作。
更换屋顶组件时,应考虑用金属板更换 RAAC 面板。如果发现 RAAC 面板受损、受潮和/或损坏,则可能需要提前更换屋顶。对于较小面积的 RAAC 面板损坏,其他维修考虑因素可以包括单独的屋顶和面板更换和/或额外的内部结构支撑。如果由于物流、天气或财务原因而推迟更换屋顶,并且存在寒冷的天气条件,则应启动除雪计划,直到可以更换为止。除雪计划应设计为向屋顶承包商提供除雪要求(基于雪/冰的重量)、安全除雪(包括通道、行进路径、生命安全规定、雪堆限制、外墙保护、地面除雪和设备建议)的指导。
摘要:由于在两种介电介质的一条有限界面上最初发现了Dyakonov表面波,因此至少有一个是各向异性的,广泛的研究,对其在具有阳性各向异性的材料的理论和体验研究中进行了研究。由于其存在的严格条件以及对位置各向异性的要求,这些波的潜在应用最初是限制的。在我们的研究中,我们介绍了一种新型的dyakonov表面波的理论预测和实验观察,该表面沿着两个具有负各向异性的介电介质之间的界面沿界面的平流传播。我们证明,由于带有两种金属板之间的浅层波导的特异性边界,因此对表面波的条件满足了各向异性介电的状态。我们通过在弱各向异性的近似中使用扰动理论来理论上研究这种模式,并证明了