由于高电力,快速充电/放电速率和长周期稳定性,对超级电容器在储能系统中的应用越来越兴趣。研究人员最近专注于开发纳米材料,以增强其超级电容器的电容性能。尤其是,由于其扩大的特定表面积,将纤维作为模板的利用带来了理论和实用的优势,这会导致快速电解质离子扩散。此外,据信,氧化还原活性成分(例如过渡金属氧化物(TMO)和导电聚合物(CPS))被认为在改善基于晶格材料的电化学行为方面起着重要作用。尽管如此,含有基于TMO和CP的纤维的超级电容器通常患有下等离子传输动力学和电子电导率较差,这会影响电极的速率能力和循环稳定性。因此,基于TMO/CP的脑的发展引起了广泛的关注,因为它们协同结合了两种元素的优势,从而在电化学领域具有革命性的应用。本综述描述并重点介绍了基于TMO-,CP-和TMO/CP基于其设计方法,为超级电容器应用的配置和电化学性能的开发的进展,同时为未来的存储技术提供了新的机会。©2019作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
最初发表于:Diulus,J Trey; Novotny,Zbynek;东芬,南昌;贝科德,扬; Al-Hamdani,Yasmine;尼古隆Comini; Muntwiler,Matthias;亨斯伯格,马蒂亚斯; Iannuzzi,Marcella;奥斯特瓦尔德(Jürg)(2024)。h-bn/金属氧化物界面通过插入生长:纳米固定催化的模型系统。物理化学杂志C,128(12):5156-5167。doi:https://doi.org/10.1021/acs.jpcc.3c07828
在高电流操作条件下发展高性能的氧气进化反应(OER)电催化剂对于碱性水电解的未来商业应用至关重要。在此,我们准备了一个三维(3D)双金属氧氧化物杂交杂种,该杂交杂种在Ni泡沫(NifeOOOH/NF)上生长,该杂种是通过将Ni Foam(NF)浸入Fe(NO 3)3溶液中制备的。在这种独特的3D结构中,NifeOOH/NF杂种由Crystalline Ni(OH)2和NF表面上的无定形FeOOH组成。作为双金属氧氧化电催化剂,NifeOOOH/NF混合动力表现出极好的催化活性,不仅超过了其他报道的基于NI -FE的电催化剂,而且超过了商业IR/C催化剂。原位电化学拉曼光谱学证明了参与OER过程的活性FeOOH和NiOOH相。从Fe和Ni催化位点的协同作用中,NifeOOOH/NF混合动力在80 C的10.0 mol l 1 KOH电解质下在具有挑战性的工业条件下提供了出色的OER性能,需要在1.47和1.51 V中的潜力,以达到1.47和1.51 V,以达到1.47和1.51 V,以达到超高的催化电流的100和500 mA。2021作者。由Elsevier Ltd代表中国工程学院和高等教育出版社有限公司出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
神经医学和肌肉障碍系,医学中心 - 弗雷堡大学,弗雷堡大学,弗雷堡,德国B神经肌肉中心,儿科和青少年医学系,维也纳,维也纳,奥地利C clinic favoriten
Heba H El-Maghrabi、Amr A Nada、Fathi S Soliman、Patrice Raynaud、Yasser M Moustafa 等。从电子废料中回收金属氧化物纳米材料。纳米材料制造的废物回收技术,第 203-227 页,印刷中,�10.1007/978-3-030-68031-2_8�。�hal- 03272410�
摘要:纳米颗粒合成的常规技术提出了重大挑战,包括使用危险物质,高能消耗和高昂的高成本。此外,他们对有毒溶剂的依赖限制了其在关键的生物医学领域的应用,会导致环境危害,并阻碍可扩展性和工业可行性。相比之下,绿色合成通过利用无毒溶剂,最大程度地减少废物产生并增强生物相容性提供了一种更加环保的方法。随着对纳米颗粒应用的兴趣,研究人员正在加强对金属和金属氧化物纳米颗粒的探索。本综述对各种绿色制造方法进行了批判性评估,确定了合成和表征的最有希望的策略。此外,它调查了生物制造金属和金属氧化物纳米颗粒的多种应用,突出了巨大的潜力,尤其是在医学中。基于铜和其他金属纳米颗粒进行了深入研究,预测了它们未来对发展生物医学技术的影响。
摘要 :改进的露天空间原子层沉积 (SALD) 头用于在各种基底上制造复杂氧化物图案。共反应物保持在周围大气中,设计了一个由三个同心喷嘴和一个前体出口组成的简单注入头。可以轻松且可逆地修改金属前体出口的直径,从而可以直接形成具有不同横向尺寸的图案。成功证明了无掩模沉积均匀和同质的 TiO 2 和 ZrO 2 薄膜,横向分辨率从毫米到几百微米范围可调,同时将膜厚度保持在几纳米到几百纳米范围内,并在纳米级控制。这种局部 SALD 方法称为 LOCALD,还可以在结构化基底上进行层堆叠和沉积。
由于渗透率低,拒绝率和膜结垢的问题,从油水乳液中去除微塑料和石油在膜技术中提出了重大挑战。这项研究着重于增强纳米纤维复合膜,以有效地分离废水中的微型污染物(0.5µm)和油水乳液。聚合氟化物(PVDF)聚合物纳米纤维是使用无针的静电纺丝技术生产的,并通过层压连接到非织造表面。通过碱性处理,生物表面活性剂(BS),TIO 2和CuO颗粒修饰膜,以防止结垢并提高分离效率。修饰的膜表现出异常的渗透性,BS修饰的膜达到9000 Lm -2 H -1 BAR -1 -1用于微塑性分离。但是,BS修饰导致油水乳液处理过程中的水渗透性降低。Tio 2和CuO进一步增强了渗透性并减少了结垢。TIO 2改性的膜在油水乳液分离中表现出卓越的性能,维持高油排排排排分率(〜95%)和防污特性。最大微塑料和油排斥率分别为99.99%和95.30%。这项研究说明了膜表面的成功修饰,以改善微塑料和油水乳液的分离,从而在废水处理技术方面取得了重大进步。
作者:E Denet · 2020 · 被引用 38 次 — ... 化学和生物武器。使用来自军事库存或生物民用的 CBRN(化学、生物、放射性、核)威胁剂...
这项研究的发现突出了使用Agilent Cary 5000 UV-VIS-NIR分光光度计与Agilent Cary Winuv软件相结合的有效性,以对半导体材料进行准确且可靠的带隙分析。祈祷的Mantis扩散反射配件的整合确保了可重复的样品定位和测量。通过软件的内置计算器函数促进波长扫描的第一个衍生物的使用,被证明是确定频带隙的简化且精确的方法。获得的带隙值与已建立的文献一致,证实了这种方法的有效性。此方法为在光催化和太阳能转化等领域工作的研究人员提供了一种强大而有效的工具,从而使各种材料中电子结构的精确表征能够精确表征。