不稳定性发生在固态复合阴极(SSC)中,该阴极(SSC)由阴极活性材料(CAM),SE和通常碳添加剂的颗粒混合物组成。氧化物和硫化物是SE的两个最精心研究的群体。氧化物类型的SE具有优势,包括高机械强度,高温耐受性,对空气和溶剂的稳定性以及广泛的电化学稳定窗口。11然而,基于氧化物的刚性SE不能在没有高温烧结的情况下在颗粒和晶粒之间形成良好的联系。高温烧结将导致CAM和氧化物之间的不希望的元素分化。12–14因此,在大多数类型的阴极中形成直接的阴极/氧化物部分接触是具有挑战性的。不同于氧化物,基于硫化物的SE具有高离子电导率和低/中等温度下的可变形性,希望将电极处理到高,接近理论密度。15–20然而,硫化物易于在CAM(例如Li(Ni X Co Y Mn 1-X-Y)O 2和Li(Ni X Co Y Al 1-X-Y)O 2)的工作势下氧化。21–23即使凸轮颗粒涂有保护层(例如,氧化物),这些保护层部分钝化了表面,例如电子渗透所需的碳添加剂,例如碳纳米诺纤维(CNF),也可能在氧化硫化物电解质中发挥作用。24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。 26–30凸轮颗粒本身的破裂也可能发生。 每个凸轮都合并24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。26–30凸轮颗粒本身的破裂也可能发生。每个凸轮都合并从机械上讲,在诱导的插入/提取时,li-ion插入/提取的循环体积变化会导致硫化物SE,CNF和CAM之间的突然或进行性接触损失,从而导致无能力失效和不可逆转的能力损失。31–34为了减轻某些机械效应(以及由于亚最佳电极制备引起的持续孔隙率),细胞可能会在循环测试期间受到超过50 MPa的一层堆栈压力。然而,实践应用需要较低的堆栈压力,例如在电动汽车中,35,36,并且压力过大可能会加速凸轮的损坏并导致LI金属电极的变形。鉴于SSC容量褪色机制的这种复杂性和相互作用,机械降解与化学和电化学侧反应的分离对于阐明发生的各种过程并寻找相应策略至关重要。在这里,我们研究了CAM体积变化和堆叠压力对SSC容量衰减的影响。两种具有相同电压窗口的活性材料,但循环过程中的不同体积变化是Chos的,包括Li 4 Ti 5 O 12(LTO),具有可忽略不计的volume变化和α-NB 2 O 5,其中4%的LI Intercalation in Intercalation 37,38比较了内在的伏特 - UME对已保留能力变化的影响。
脑电图 (EEG) 是对大脑中神经元放电产生的电活动的连续测量。这涉及在头皮的多个位置放置金属电极,以毫秒级的时间分辨率记录电压波动。然后可以处理这些记录以产生电活动的频谱分析或生成事件相关电位 (ERP),该电位表示对任务或刺激的平均反应。如今,EEG 因其非侵入性和易用性而成为学术界和医疗专业人士最流行的神经科学工具之一 [1]。最近,几家公司开发了消费级 EEG 设备。这些设备小巧、无线且设置精简,对新手研究人员或希望在传统实验室环境之外收集数据的人特别有吸引力 [2]。更重要的是,消费级设备比研究级设备便宜,为资金有限的人提供了一种经济实惠的神经生理数据收集方式。由于其可访问性,消费级 EEG 已在不同领域用于各种用途。软件工程师和计算机科学家使用消费级脑电图收集高分辨率时间序列数据。然后处理这些数据以创建或优化机器学习和信号处理算法[3-5]。反过来,这些算法可以与设备结合使用,开发脑机接口(BCI)系统。工程和机器人领域的专家可以训练机器实时响应神经数据中的模式[6]。同步后,人类用户可以配置BCI来控制多种电子设备,包括轮椅[7]、无人机[8]、智能家居[9-11]和网络浏览器[12]。临床医生报告称,他们使用该技术进行神经反馈疗法[13]、促进学习[14]、评估患者睡眠质量[15、16],并确定情感状态[17-20]。科学家越来越多地使用消费级设备来收集神经数据,以解决各种理论和实践研究问题 [2, 21, 22]。消费级 EEG 研究的激增启发了一些非系统性综述(见表 1)。例如,一些综述比较了单个消费级 EEG 设备与非 EEG 生物传感器在癫痫检测 [23]、BCI 系统 [24] 和压力识别 [25] 领域的性能。其他综述则在单个领域比较了多个消费级 EEG 设备 [2, 21, 26 – 28]。例如,Dadebayev 等人 [29] 的综述重点是情绪识别;Asl 等人 [30] 专注于困倦检测,Khurana 等人 [31] 专注于神经营销。其中最全面的评论之一考虑了大约 100 项“精心挑选”[22]的研究,这些研究使用了四种消费级设备——NeuroSky MindWave、Emotiv EPOC+、interaXon Muse、和 OpenBCI 神经耳机——在认知、BCI、教育研究和游戏开发领域。虽然这些非系统性评论提供了对某些 EEG 设备领域特定功能的见解,但目前关于这个主题的文献充其量是零散的。事实上,令人惊讶的是,到目前为止,还没有对目前可用和常用的消费级 EEG 设备的研究相关用途进行系统范围审查。因此,本文的目的是绘制大量使用消费级 EEG 来收集