免责声明 本信息是根据美国政府机构赞助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要:随着元信息开始发现工业应用,有必要开发可扩展且具有成本效益的制造技术,这些技术可提供低于100 nm的分辨率,同时提供高吞吐量和较大的面积图案。在这里,我们证明了使用UV纳米印刷光刻和深层反应离子蚀刻(Bosch和低温)的使用。可靠的过程,用于制造高模式有限的硅矩形支柱。证明了结构的质量,跨表镜的质量,这些镜头表明了衍射有限的聚焦,并接近NIR波长λ∈(1.3 µm,1.6 µm)的理论效率。我们演示了一个过程,该过程消除了博世过程的特征性侧壁表面粗糙度,从而使90度垂直侧壁光滑。我们还证明,在Bosch侧面表面粗糙度(或45 nm的压痕(或扇贝))的情况下,元表面镜头的光学性能不会受到不利影响。为实现全晶片覆盖而定义了下一步的开发步骤。
对冶金和材料科学领域的高温耐铝,水透明和生物甲状腺素的比较分析是一项有价值的研究。这些冶金过程被用来从各种来源提取金属,了解它们的差异和优势对于有效的金属恢复和可持续资源管理至关重要。从矿石,浓缩物和废料中提取和回收金属是冶金工业的基本过程。在可用的各种方法中,高分测铝,水透明和生物 - 羟基铝作为独特且广泛使用的方法。高温铝过程也称为干法,水均能铝过程称为湿法方法,而生物 - 氢铝过程称为生物介绍过程。干燥,湿和生物涉及方法之间的比较分析旨在探索,评估和对比这些方法,在电子废物(电子废物)中提取金属的背景下,阐明了它们的原理,应用和环境影响。电子废物或电子废物在全球范围内越来越多。电子垃圾包含无数有价值的金属,包括但不限于黄金,白银,铜和钯,以及危险物质,使其适当的管理至关重要。提取方法的选择在确定金属恢复,经济生存能力和环境影响的效率方面起着关键作用。这种比较分析的主要目的是提供对高分测铝,水透明和生物 - 氢铝的全面理解,因为它们与从电子废物中提取金属有关。通过检查这三种方法的原理,过程,选择性,能源需求,环境影响以及经济考虑,旨在将决策者,研究人员和行业专业人员告知可持续电子垃圾回收的最佳实践。
图1(a)手性绝缘体和金属的键合系统。手性绝缘子上的温度梯度会产生从手性绝缘体到金属的旋转电流。 (b)磁旋转效果的示意图。 (c)手性绝缘体中的声子分散。
摘要添加剂制造业(AM)的最新进展引起了重大的工业兴趣。最初,AM主要与制造原型相关联,但是AM的进步与可用材料的扩展范围(尤其是用于生产金属零件)扩大的范围已经扩大了应用区域,现在该技术也可以用于制造功能零件。尤其是,AM技术可以用传统的制造工艺创建复杂和拓扑优化的几何形状。然而,在大多数情况下,使用独立的AM技术,无法实现紧密的几何公差以及航空航天,生物医学和汽车行业的严格表面完整性要求。因此,AM零件需要大量的后处理,以确保满足其表面和尺寸要求以及它们各自的机械性能。在这种情况下,不足为奇的是,AM与后处理技术的整合到单个和多设置的处理解决方案中,通常称为Hybrid AM,已成为行业非常有吸引力的命题,同时吸引了重大的R&D兴趣。本文回顾了与混合AM解决方案相关的当前研究和技术进步。特别的重点是将基于激光AM的功能加工粉末功能的混合AM解决方案与必要的后制处技术,用于生产具有必要准确性,表面完整性和材料特性的金属零件。将基于激光AM与后处理技术集成的市售混合动力AM系统以及其关键应用领域还进行了审查。最后,讨论了扩大混合AM解决方案的工业使用方面的主要挑战和开放问题。
异质结构将胶体纳米晶体变成多组分模块化构建体,其中不同的金属和半导体阶段的域是通过粘结界面互连的,是一种巩固溶液可加工的可加工混合纳米材料的先进繁殖方法,能够表达能够表达丰富的物理物质和全新的物理质量,并且具有全新的物理性和功能。以应对金属 - 官方导体纳米层结构的湿化合物合成所带来的挑战,并克服了基于部分化学范围的可用方案的一些内在局限性,创新的变换途径,基于部分化学化的范围,在标准种子生长方案的框架内建立了局部化学范围。这些技术涉及对预制的纳米晶底物的替代反应,因此具有可编程配置多样性的巨大综合潜力。本综述文章说明了迄今为止在金属 - 核导能器纳米层结构中取得的成就,其组件模块的定制布置通过转换途径的量身定制,这些途径利用了对单空和双金属种子的空间控制部分化学化的利用。在液体培养基中纳米层结构的演变基础的最合理的机制中讨论了这些方法的优点和局限性。强调了化学化的金属 - 纳米骨构结构的代表性物理化学特性和应用。最后,概述了领域的发展前景。
是通过化学,电化学,光或界面效应的半导体材料来实现的。半导体材料的重要参数是带隙(E G),以及最高占用和最低的无占用带与真空的位置。这些带被称为无机半导体的价和传统带。对于有机半导体,定义条带隙的频带通常称为最高的分子轨道(HOMO)和最低的无置分子轨道(Lumo)。半导体聚体的一个优点是能够通过分子设计调整带隙和同型和Lumo水平的位置。与Inor-Ganic半导体相反,化学结构的少量修饰会导致聚合物半导体的电气和光学正确变化。在发现聚乙烯和碘或砷五氟二氟掺杂后的高电导率后,被认为是用于用于抗静态涂料,电池或电池材料的金属的替代品,以作为金属的替代品。 [3]被认为是用于用于抗静态涂料,电池或电池材料的金属的替代品,以作为金属的替代品。[3]
2005 年,VALLON 再次推出技术创新产品 VMR2:双传感器探测器将金属探测器与地面雷达相结合。得益于双传感器技术,探测器不仅可以识别常规地雷等含有金属的物体,还可以探测简易爆炸装置 (IED) 等不含金属的物体 - 这是“不对称战争”时代的一大优势。
2005 年,VALLON 再次推出技术创新产品 VMR2:双传感器探测器将金属探测器与地面雷达相结合。得益于双传感器技术,探测器不仅可以识别常规地雷等含有金属的物体,还可以探测简易爆炸装置 (IED) 等不含金属的物体 - 这是“不对称战争”时代的一大优势。
世界上生产最多的植物油被认为是粗棕榈油(CPO)。铣削后立即,每月从JP,Calaro和P.(对照)夫人拥有的油棕种植园收集了处理后的CPO(n = 18)。使用电感耦合等离子体光学发射光谱仪(ICP-OES)分析重金属的样品(Mn,Zn,Co,Pb,pb,ni,ni,cr,cr,cd和as)。在所有种植园的CPO中,重金属的浓度变化,并且在CPO中从农药文化种植园(JP和Calaro油棕榈种植园)中升起。油棕榈种植园Calaro的浓度最高,在所研究的所有重金属中。JP油中的平均重金属浓度为0.29 mg/kg(CO),0.41 mg/kg(Pb),3.22 mg/kg(Ni),0.33 mg/kg(CR),0.27 mg/kg/kg/kg(CD),0.31 mg/kg/kg(as),5.67 mg/kg(aS),/kg/kg/kg/kg/kg(2.18 mn),和2.18 mm n M.118 mm,和,和,和,和,和,和,和2.18 m。 CALARO中的CPO为0.45 mg/kg(CO),0.62 mg/kg(PB),4.27 mg/kg(Ni),0.45 mg/kg(CR),0.39 mg/kg(CD),0.44 mg/kg(as),0.44 mg/kg(AS),8.15 mg/kg(8.15 mg/kg(Zn)和2.99 MN和2.99 MN(MMG/KN)。CPO具有平均浓度的CO,Pb,Ni,Cr,Cd,AS和MN,其高于WHO的食物可接受限制,使其不适合人类消费。根据其THQ(目标危险商)的价值和EDI(估计的每日摄入量),锌是Calaro和JP油棕种植园中非癌污染的主要原因。来自正在研究的种植园中CPO中的所有重金属的EDI值小于其RFD(参考口服剂量)值。由CPO中每个重金属的THQ,HRI和EDI值表明了安全性。当消耗了Calaro和JP油棕种植园的CPO时,铅是致癌污染的主要原因。Calaro油棕和JP油棕榈种植园的CPO中的PB和NI致癌风险值大于10-4,这表明在60年的终生过程中,消费者可能由于PB和NI中毒而发展癌症。