该研究研究了使用结构表征(气相色谱质量谱图,GC-MS,GC-MS和傅立叶转化基础型,FTIR,FTIR)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir),分别研究了1.0 m HCl和0.5 m H 2 SO诱导的低碳钢上的抗腐烂潜力(ZO)。电位动力学极化,PDP)技术和理论模拟。进行了结构表征,以鉴定植物提取物中存在的化学成分和官能团,而电化学技术和理论计算则用于检查提取物的抗腐蚀潜力并确定实验结果。GC-MS的结果表明,提取物中存在二十三(23)个化合物,其中三个(1-(1,5-二甲基-4-己基)-4-甲基 - 十二烷酸,十二烷酸和9-二十二苯卡烯酸(Z)-2- hydroxy-1-(hydroxy-1-(hydroxy-etraculation for for in Concution)在ZO提取物中存在以下官能团(O – H,C = C,C = O,C – C和C – H)。EIS的结果表明,ZO提取物在1 M HCl中的低碳钢和0.5 m H 2中的低碳钢和93.6%的腐蚀抑制作用分别在1000 mg / l的最大抑制剂浓度下分别为1000 mg / l。另外,PDP的结果表明,ZO提取物作为混合抑制剂起作用,因为阳极反应过程都改变了。量子化学计算结果表明,与其他两种化合物相比,9-八度二苯甲酸(Z)-2-羟基-1-(羟甲基)乙基酯具有良好的能隙(∆ E),表明其在硫酸环境中与金属表面更好地与金属表面相互作用。通过分子动力学模拟,在H 2 So 4环境中,在H 2 SO 4环境中,其良好的吸附能量为-355.55 kcal / mol在H 2 So 4 So环境中与-167.81kcal / mol相比。
材料与方法 使用 Lightning-Link 试剂盒 (ab201807, Abcam plc., 英国剑桥) 将 HRP 与白蛋白结合,并通过蛋白质印迹法确定结合是否成功。在 DMEM 中使用 316L 不锈钢和纯镁圆盘进行浸没实验。成像是通过将圆盘从培养基中取出并在空气中干燥圆盘,然后将增强化学发光 (ECL) 底物直接添加到金属表面来进行的。通过使用 Azure 600 (Azure Biosystems Inc., 都柏林 CA) 在表面进行化学发光成像,ECL 和吸附的结合蛋白的反应可以指示吸附的蛋白质量。随后清洗表面以去除剩余的底物并返回浸没溶液以在多个时间点继续研究动态表面。
有效的电化学能源存储和转化需要高性能电极,电解质或催化剂材料。在这项贡献中,我们讨论了ForschungszentrumJülich(IEK-13)的能源和气候研究所基于模拟的努力,以及旨在改善计算方法并提供能源材料的分子水平的合作机构。我们专注于讨论电子结构,氧化态和相关的氧化还原反应的正确计算,掺杂的氧化物中的相转化以及在存在电解质存在下氧化物和金属表面上表面化学反应的挑战。尤其是,在此贡献的范围内,我们提供了有关Ni/Co和AM/U含氧氧化物以及Pb,Au和Ag Metal表面材料的新的模拟数据。计算结果与可用的实验数据结合使用,以进行计算方法性能的周到分析。
摘要 MS 是工业上最常用的合金,因为它具有热要求高、成本低、易得、强度高、耐久性好、导电性好等特点。近年来,科学家们将重点放在从植物、水果提取物和精油中获得的绿色抑制剂上。除了环境友好外,植物提取物在耐腐蚀方面也变得越来越重要,因为它们成本低、毒性小、可用性高。此外,它们富含具有极性原子的有机化合物,例如 O、P、S 和 N,分子中含有多个键,通过这些键它们可以通过各种吸附等温线吸附到金属表面形成保护膜。本文综述了天然植物提取物作为 H 2 SO 4 溶液中的腐蚀抑制剂对 MS 腐蚀的控制研究工作。关键词 : 腐蚀抑制;EIS;H 2 SO 4;MS;植物提取物;PDP;WL。
粗糙的金属表面会导致表面等离子体极化子 (SPP) 严重散射,从而限制 SPP 的传输效率。在此,我们提出了一种设计超紧凑等离子体路由器的通用方案,该路由器可以在任意形状的粗糙表面上限制和引导 SPP。我们的策略利用了最近提出的变换不变超材料。为了说明这种方法的优势,我们进行了有限元模拟,结果表明所设计的表面波路由器的性能不受厚度变化的影响。因此,1/6 厚度的变换不变超材料层可以显著抑制任意形状的金属凸起或缝隙的散射。我们还给出了基于周期性金属/ε 近零 (ENZ) 材料堆叠实现这种超紧凑表面波路由器的蓝图。
材料设计完整性评估化学处理其他 - 填写创新开发日期:2018 年 1 月至 2018 年 5 月网站:https://www.uaa.alaska.edu/academics/college-of-engineering/ 摘要描述:在阿拉斯加大学工程停车场的屋顶上设计并安装了模块化和可调节的大气腐蚀试验。支架为 46 英寸 x 46 英寸,可以调整到三个不同的角度(与水平面成 0、30、45 度),类似于汽车引擎盖。暴露角度会影响雪/冰的保留,从而导致金属表面形成不同厚度的水分。暴露角度还会影响雨水的冲刷,这可能会改变大气腐蚀机制。该支架通过隔离腐蚀诱导变量及其对极寒气候下腐蚀的主要影响来帮助识别天气参数。
2.3 如果不加以控制,腐蚀最终会导致结构损坏。腐蚀的外观因金属而异。在铝合金和镁的表面上,腐蚀表现为点蚀和蚀刻,并且通常与灰色或白色粉末沉积物相结合。在铜和铜合金上,腐蚀形成一层绿色薄膜;在钢上,腐蚀形成一种红色腐蚀副产品,通常称为铁锈。当去除灰色、白色、绿色或红色沉积物时,每个表面都可能出现蚀刻和凹陷,具体取决于暴露时间和腐蚀严重程度。如果这些表面凹坑不太深,它们可能不会显著改变金属的强度;但是,这些凹坑可能成为裂纹发展的场所,特别是在部件承受巨大压力的情况下。某些类型的腐蚀会潜入表面涂层内部和金属表面之间,并可能蔓延直至部件损坏。
安装显示屏 该秤具有可拆卸显示屏。使用内置磁铁可将显示屏安装到大多数金属表面。您也可以使用显示屏背面的安装孔和标准螺钉安装显示屏。本用户指南背面包含安装模板。显示屏可安装在距秤底座 1.8 米(6 英尺)的位置。 将显示屏安装到非金属表面 1. 使用本用户指南背面的模板,在墙壁上所需高度处钻两个相距 120 毫米(4 3/4 英寸)的孔。 2. 在每个孔中拧入一颗螺钉,直到螺钉头从墙壁突出 3 毫米(1/8 英寸)。如果螺钉头突出超过 3 毫米(1/8 英寸),可能会损坏秤显示屏。 3. 将秤显示屏背面的孔与螺钉对齐。 4. 将显示屏滑到螺钉上。显示屏应牢固地滑到螺钉上。
安装显示屏 该秤具有可拆卸显示屏。使用内置磁铁可将显示屏安装到大多数金属表面。您还可以使用显示屏背面的安装孔和标准螺钉安装显示屏。本用户指南的背面包含安装模板。显示屏可安装在距秤底座 6 英尺(1.8 米)的位置。将显示屏安装到非金属表面 1.使用本用户指南背面的模板在墙壁上所需高度钻两个相距 4 3/4 英寸(120 毫米)的孔。2.在每个孔中拧入一颗螺钉,直到螺钉头从墙壁伸出 1/8 英寸(3 毫米)。如果螺钉头伸出超过 1/8 英寸 (3 毫米),可能会损坏秤显示屏。3.将秤显示屏背面的孔与螺钉对齐。4.将显示屏滑到螺钉上。显示屏应牢固地滑到螺钉上。
MMIC的微波包装的主要目标之一是保存所需的RF属性。在放大器MMIC的情况下,相对于包装的最关键属性是向前增益,输入匹配,反向隔离,增益平坦和稳定性。基于LTCC的方法是包装MMIC的有趣选择。陶瓷载体形成了用于电线粘合和翻转芯片的粘合基板,可用于整合高质量的被动剂。集成的阻止电容器可以降低组装成本,并以低额外的成本来实施诸如RF过滤和防止静电放电之类的其他功能[4]。对于模具附着,Flip-Chip由于flip-Chip跃迁的良好发电性和低寄生电感而引起了人们的注意。但是,在实践中可以看出,Flip-Chip还需要处理特定的寄生效应,这些寄生效应将芯片倒挂在金属表面上时,例如在大多数丝网键入方法中完成的金属表面[3] [5]。