摘要:近几十年来,增材制造领域人气飙升,尤其是作为传统金属零件生产的可行替代方案。定向能量沉积 (DED) 是最有前途的增材技术之一,其特点是沉积速率高,其中电弧增材制造 (WAAM) 就是一个突出的例子。尽管 DED 具有诸多优势,但众所周知,其生产的零件表面质量和几何精度不佳,这一直是其广泛应用的主要障碍。这在一定程度上是由于对增材层产生的复杂几何形状缺乏了解。为了应对这一挑战,研究人员专注于表征增材层的几何形状,特别是焊珠的外部。本文通过比较两种不同的技术:振荡策略和重叠焊珠,专门研究了产生的壁的几何特征和对称性。
摘要 激光定向能量沉积(L-DED)作为一种同轴送粉金属增材制造工艺,具有沉积速率高、可制造大型部件等优点,在航空航天、交通运输等领域有着广泛的应用前景。然而,L-DED在金属零件尺寸和形状的分辨方面存在工艺缺陷,如尺寸偏差大、表面不平整等,需要高效、准确的数值模型来预测熔覆轨道的形状和尺寸。本文提出了一种考虑粉末、激光束和熔池相互作用的高保真多物理场数值模型。该模型中,将激光束模拟为高斯表面热源,采用拉格朗日粒子模型模拟粉末与激光束的相互作用,然后将拉格朗日粒子模型与有限体积法和流体体积相结合,模拟粉末与熔池的相互作用以及相应的熔化和凝固过程。
青岛铸质工业提供的服务 l 砂型铸造 l 熔模铸造 l 壳型铸造 l 永久模铸造 l CNC 加工 作为一家专业的铸造制造商,青岛铸质工业非常注重质量和技术,我们的产品主要是铸件和锻件。 我们主要供应砂型铸造、熔模铸造(失蜡铸造或精密铸造)和压铸。 如今,其产品销往全球许多国家。 铸质专注于金属零件行业,我们在金属铸造领域提供专业的服务。 1. 砂型铸造 2. 熔模铸造 3. 壳型铸造 4. CNC 加工 5. CAD 设计 6. 工具/模具设计 许多来自世界各地的买家都从中国购买产品。 但您知道中国产品的质量吗? 也许您只支付了表面和价格,而内在质量却丢失了。 在 Solidworks 中进行外壳铸件设计。 是什么让铸质成为最好的?
用于金属零件制造的增材制造 (AM) 因其灵活性和工艺能力而获得了越来越多的市场份额。AM 似乎特别适合小批量生产,例如高度定制的零件(例如,手术植入物中使用的假体)或原型。在这种情况下,电弧增材制造 (WAAM) 是一种能够以分层方式生产三维组件的工艺。WAAM 属于直接能量沉积技术 1 。通过专用头部选择性沉积熔融金属来创建层。原材料以金属丝的形式进料,并通过电弧的加热作用熔化 2 。 WAAM 的优势在于:(i)可实现的构建速度明显高于基于激光的增材工艺(50-130 克/分钟 vs. 2-10 克/分钟)3 ,以及(ii)可以生产更大的部件(1000-2000 毫米 vs. 300-600 毫米)4 。与其他基于粉末的 AM 工艺相比,WAAM 的主要缺点是尺寸精度和特征分辨率降低 5 。因此,WAAM 在经济上方便,适用于
电子束粉末床熔合 (E-PBF) 是一种用于金属零件增材制造的极具吸引力的技术。然而,工艺改进需要精确控制电子束传递给粉末的能量。在这里,我们使用可调谐二极管激光吸收光谱 (TD-LAS) 来测量 E-PBF 期间蒸发的钛原子的速度分布函数。激光二极管发射的窄光谱范围允许对蒸发原子进行高分辨率吸收分布分析,从而准确确定它们在熔化过程中的多普勒展宽、密度和温度。获得的蒸汽温度表明熔池表面相对于钛的低压 (0.1 Pa) 沸点过热,表明蒸发发生在非平衡条件下。我们表征了线性能量密度对钛蒸发的影响,发现它与饱和蒸汽压一致。我们对蒸汽特性的表征为熔池模拟提供了可靠的输入。此外,可进一步利用TD-LAS来防止低浓度合金元素的蒸发,从而防止打印部件出现缺陷。
摘要:激光粉末床熔合(LPBF)是一种很有前途的金属材料增材制造工艺,其优点是产品设计灵活,可制造各种机械零件。然而,由于金属零件是逐层堆叠的,因此 LPBF 制备的材料具有各向异性的微观结构,这对于材料设计非常重要。本研究从构建方向探究了 LPBF 制备的 18Ni300 马氏体时效钢(MS)的耐腐蚀性能,并研究了热处理和时效对微观结构和耐腐蚀性能的影响。LPBF 中快速冷却形成的亚晶胞提高了 MS 的耐腐蚀性能。因此,构建后的 MS 具有最高的耐腐蚀性能。然而,热处理或时效会消除亚晶胞,导致耐腐蚀性能下降。对于 18Ni300 MS,圆柱形亚晶胞形成并沿着散热方向排列,与建造方向相似;因此,在建造状态的 MS 中发现明显的耐腐蚀各向异性。然而,这种耐腐蚀各向异性会因热处理和时效而减弱,从而消除亚晶胞。
摘要:激光粉末定向能量沉积工艺是一种金属增材制造技术,可制造具有高度几何和材料灵活性的金属零件。原位送粉的独特特性使得在制造过程中使用元素粉末混合物定制元素组成成为可能。因此,它可以潜在地应用于低成本合成工业合金、用不同的粉末混合物改性合金以及使用元素粉末混合物作为原料设计具有位置相关特性的新型合金。本文概述了使用激光粉末定向能量沉积方法通过供给元素粉末混合物来制造各种类型的合金。首先,详细描述了激光粉末定向能量沉积在制造金属合金方面的优势。然后,回顾了通过多种类别的元素粉末混合通过激光粉末定向能量沉积制造合金的最新研究和发展情况。最后,讨论了未来发展中的关键技术挑战,主要是成分控制。
定向能量沉积 (DED) 是一种增材制造技术,可以快速生产和修复具有灵活几何形状的金属零件。DED 期间热和材料传输的复杂性会产生不必要的微观结构异质性,从而导致零件性能分散。在这里,我们研究了使用不同沉积速率通过粉末吹制 DED 生产的 Inconel 718 在不同长度尺度上的微观结构变化。我们量化了零件内晶粒结构、纹理、成分和凝固结构的空间趋势,并将它们与硬度、屈服强度和杨氏模量的变化相关联,以突出凝固过程中热环境的影响。我们发现,使用高沉积速率时采用的高能量输入有利于沿构建和横向方向产生显着的微观结构异质性,这源于所使用的沉积策略产生的不对称冷却速率。我们还发现,在 Inconel 718 上采用的标准热处理不适合使微观结构均质化。这些结果对于开发工业相关的增材制造零件的构建速率策略具有重要意义。© 2021 作者。由 Elsevier BV CC_BY_NC_ND_4.0 出版
摘要。这些年来,工业进步带来了快速、高质量的生产。尽管取得了这些进步,但与此类生产相关的影响,无论是社会影响、经济影响还是环境影响,有时都没有得到广泛的研究。该行业意识到了更环保的方法的重要性,因此,出现了新的可持续技术,如增材制造 (AM)。为了概括 AM 相对于传统制造的环境效益,使用了生命周期评估 (LCA) 等方法。拟议的工作旨在了解和量化与用于制造金属零件的特定 AM 技术(电弧增材制造 (WAAM))相关的环境影响。进行了 LCA,并考虑了相同情况,分析了与生产 3 种不同金属零件相关的环境影响。为了了解获得的结果,同样考虑了也用于制造金属零件的计算机数控 (CNC) 铣削。在这个特定的应用中,与 CNC 铣削相比,WAAM 对环境的影响被证实为 12%-47%,具体取决于所考虑的几何形状。这两种工艺确定的环境热点都是原材料的生产。
Inconel 625 是一种镍基高温合金,由于其耐腐蚀性以及良好的机械性能(如高温下的强度和抗热蠕变性),广泛应用于航空航天、海洋和化学应用[1, 2]。该合金以镍基为主,主要合金元素含量较高,包括:Cr、Mo、Nb、Ta、Fe。 Inconel 625 中的主要相是面心立方 γ 相,此外,根据位置、温度和化学成分的不同,还有 γ”、Ni 2 (Cr,Mo)、δ、碳化物、μ 和 laves 相[3]。用 Inconel 625 制造具有复杂形状的零件始终是一个巨大的挑战,因为 Inconel 625 具有低导热性、差的可加工性和高硬度[4, 5]。然而,Inconel 625 具有良好的可焊性,是高能加工方法的首选[6]。 3D 金属打印工艺是利用逐层金属沉积的方法根据数字模型(CAD 模型)制造零件的过程 [7, 8]。在过去的十几年中,利用金属粉末和激光束作为热源的金属3D打印工艺可以生产形状复杂的金属零件,不仅在基础研究而且在工业应用中得到了广泛的应用[9,10]。