使用观测,理论模拟和建模研究行星大气中的物理和化学过程。测试室也被开发并用于模拟月球,火星和金星环境。分析同位素(原始和宇宙基础)和陨石中的元素丰度用于表征早期太阳系对象和陆地储层中的过去和当代过程。通过在PRL建立的最先进的实验设施对行星样品及其陆地类似物的岩石学,形态,化学组成和同位素研究来研究行星体中的地质过程。研究了行星体遥感的数据,以研究表面地质和形态的目的。
我们的太阳系 | 我们的太阳系远不止太阳及其八大行星——它是一个广阔而充满活力的“邻里”。通过研究我们当地的空间,我们可以深入了解更广阔的星系。恒星和行星如何形成、相互作用和释放能量,这里的情况同样适用于一百万光年之外。在太阳系中,游客可以体验全新的重力跳跃——选择一个真人大小、身着太空服的化身,观看它出现在投射到墙上的不同行星表面上。当你跳跃时,化身会模仿你的动作,结果会根据行星的不同而不同。在金星上,你的跳跃与地球类似,但在一颗小行星上,你的化身可能会飞到画廊的椽子上。
摘要 — 可以说,我们生活的时代是新太空时代的开端。当所有主要的私营和公共太空部门都在竞相成为第一个登陆火星的人时,星际任务就变得至关重要。不仅火星,木卫二和金星也被认为是生命的家园。自主性是实现这些星际任务目标的基本部分。深度学习和计算机视觉可用于实现航天器的自主性。本文讨论了计算机视觉在太空应用中的作用以及计算机视觉在火星探索中的进展。它还总结了 NASA MER 任务中使用的立体视觉算法,这是计算机视觉在太空探索中的典范。关键词 — 航天器对接、轨道机动、立体视觉
a b s t r a c t这项工作引入了一种方法,可以通过将机器学习的替代模型整合到OASIS全球循环模型(GCM)中来增强3D大气模拟的计算效率。传统的GCM基于反复整合物理方程的传统GCM在一系列时间段的大气过程中进行了大气过程,这是时间密集的,导致了模拟的空间和时间分辨率的妥协。这项研究赋予了这一限制,从而在实际时间范围内实现了更高的分辨率模拟。加速3D模拟在多个域中具有显着含义。首先,它促进了将3D模型集成到系外行星推理管道中,从而从以前从JWST和JWST Instruments预期的大量数据中对系外行星进行了良好的表征。其次,3D模型的加速度将使地球和太阳系行星的更高分辨率模拟,从而更详细地了解其大气物理和化学。我们的方法用基于仿真输入和输出的训练的基于神经网络的复发模型代替了绿洲中的辐射传输模块。辐射转移通常是GCM最慢的组件之一,因此为整体模型加速提供了最大的范围。替代模型在金星大气的特定测试案例上进行了训练和测试,以基准在非生物大气的情况下基于这种方法的实用性。这种方法产生了令人鼓舞的结果,与在一个图形处理单元(GPU)上相比,与使用匹配的原始GCM在金星样条件下相比,在一个图形处理单元(GPU)上表明,ABO V E 99.0%的精度和147个速度的因子。
根据传说,金星和海王星的儿子埃里斯(Erice)在三千多年前在山顶建立了一个小镇(海拔750米)。现代历史的创始人 - 即记录事件以有方法和时间顺序的序列记录,因为它们确实发生了,而没有提及神话般的原因 - 大修西德斯(〜500 b.c.),写有关与特洛伊征服(公元前1183年)相关的事件的文章说:«特洛伊(Troy)倒塌后,一些特洛伊人从阿查伊(Achaei)逃脱了阿查伊(Achaei),乘船驶向西西里岛(Sicily),当他们在与西卡兰人(Sicanians)的边界附近定居在一起时,他们被称为Elymi:他们的城镇是Segesta和Erice。这启发了维吉尔(Virgil)描述了特洛伊木马王室在埃里斯(Erice)的到来,以及他的儿子埃涅阿斯(Aeneas)埋葬在埃里斯(Erice)下方的海岸。荷马(〜1000 B.C.),theocritus(公元前300年),波利比乌斯(〜B.C.),维吉尔(〜50 B.C.),Horace(〜20 B.C.)和其他人在诗歌中庆祝了西西里岛这个宏伟的地方。在七个世纪(XIII-XIX)中,埃里斯镇在当地寡头的领导下,他的智慧向您保证了长期的文化发展和经济繁荣,这反过来又引起了您今天看到的许多教堂,修道院和私人宫殿。在埃里斯(Erice)中,您可以欣赏金星城堡(Cyclepean)的墙(约公元前800年)和哥特式大教堂(公元1300年)。Erice目前是古代和中世纪建筑的混合物。在埃加迪亚群岛上 - 第一场匿名战争的果断海军战场(公元前264-241年)其他古代文明的杰作还可以在附近找到:在莫蒂亚(腓尼基人),塞斯塔(Elymian)(Elymian)和Selinunte(希腊语)。- 暗示性的新石器时代和旧石器时代的遗迹仍然可见:favignana的石窟,莱万佐的雕刻和壁画。
Rocket Lab 的高 ΔV 小型航天器高能光子 (Photon) 可以实现定期、专用、低成本的行星目的地科学任务,从而为科学家提供更多机会并提高科学回报率。高能光子可以搭载 Rocket Lab 的电子运载火箭发射,以精确瞄准行星小型航天器任务的逃逸渐近线,有效载荷质量高达 ~40 千克,无需中型或重型运载火箭。高能光子还可以作为次级有效载荷在 EELV 二级有效载荷适配器 (ESPA) Grande 端口或 Neutron 等其他运载火箭上飞行。本文介绍了目前正在开发的行星小型航天器,这些航天器利用了 Rocket Lab 的深空能力,包括月球、金星和火星任务。
• 600 平方英尺的干燥室,相对湿度为 1%,用于处理对水分敏感的材料 • 具有温度和湿度控制的高空舱,用于航空电池 • 用于金星 (>450C) 测试的高温炉 • 约 20 个惰性可编程环境室,温度范围为 -75C 至 +200C • >200 个独立电池测试通道,用于完全无人值守的实验室规模电池和大型电池模块测试 - 高达 400A 和 400V • 用于基础研发的湿化学实验室 • 3D 打印功能 • 卷对卷涂布机,用于扩大电极制造 • 半自动化软包电池堆叠设备 • 用于惰性组装和破坏性物理分析的手套箱 • 用于电池堆焊接的超声波焊机 • 安全装置
斯科菲尔德兵营阵亡将士纪念日纪念活动向公众开放 夏威夷斯科菲尔德兵营(2023 年 5 月 25 日)——美国陆军将于 5 月 29 日上午 10 点在当地的哨所公墓举行一个小型阵亡将士纪念日纪念仪式,邀请公众一起纪念为国捐躯的陆军退伍军人和姊妹军种成员。 美国陆军驻夏威夷司令史蒂夫·麦克古尼格尔上校将担任仪式发言人。紫心勋章军事组织、海外战争退伍军人协会、美国退伍军人协会和金星家庭的代表也将参加,敬献花圈纪念阵亡战友。仪式开始前,一群士兵和当地童子军(男童、女童和幼童军)将在每个墓碑上放置小美国国旗。