PHYS 764 - 量子信息 (3 学分) 量子信息理论和量子通信基础。主题包括:量子力学假设、经典信息和熵、经典信息压缩和经典典型集、量子熵和量子相对熵、量子态鉴别、舒马赫的量子压缩理论和量子典型子空间、使用量子信道传输经典信息、量子信道的经典容量定理。先决条件:MATH 344 或 MATH 544 或同等课程成绩为 C 或更高,或经讲师许可;MATH 511 或 STAT 511 或同等课程成绩为 C 或更高,或经讲师许可;无需量子力学知识。
13:00-13:15 开发血管组织学的影像替代品以量化逆向重塑 Karin Tran-Lundmark 13:15-13:23 使用深度学习凝块血管放射组学和机器学习进行基于 CT 的 CTEPH 鉴别 Pietro Nardelli 13:23-13:30 第 2 阶段 INS1009-211 研究中功能性呼吸成像 (FRI) 分析的新见解:曲前列环素棕榈酰吸入粉剂 (TPIP) 对 PH-ILD 患者肺血管的影响 Colin Church 13:30-13:45 与 PVRI 和 PHA USA 的联合演讲患者报告的结果 Frances Varian
13:00-13:15 开发血管组织学的影像替代品以量化逆向重塑 Karin Tran-Lundmark 13:15-13:23 使用深度学习凝块血管放射组学和机器学习进行基于 CT 的 CTEPH 鉴别 Pietro Nardelli 13:23-13:30 第 2 阶段 INS1009-211 研究中功能性呼吸成像 (FRI) 分析的新见解:曲前列环素棕榈酰吸入粉剂 (TPIP) 对 PH-ILD 患者肺血管的影响 Colin Church 13:30-13:45 与 PVRI 和 PHA USA 的联合演讲患者报告的结果 Frances Varian
13:00-13:15 开发血管组织学的影像替代品以量化逆向重塑 Karin Tran-Lundmark 13:15-13:23 使用深度学习凝块血管放射组学和机器学习进行基于 CT 的 CTEPH 鉴别 Pietro Nardelli 13:23-13:30 第 2 阶段 INS1009-211 研究中功能性呼吸成像 (FRI) 分析的新见解:曲前列环素棕榈酰吸入粉剂 (TPIP) 对 PH-ILD 患者肺血管的影响 Colin Church 13:30-13:45 与 PVRI 和 PHA USA 的联合演讲患者报告的结果 Frances Varian
我们提出了一个通用框架,用于解决多类分类问题,该框架使用可以解释为模糊集的分类函数。我们在基于量子态鉴别技术的量子启发式分类器领域专门研究这些函数。具体来说,我们使用由给定数据集的训练集确定的模糊可观测量(正算子值测度)来构建这些分类函数。我们表明,一旦这些分类函数从训练数据集的量子编码中“提炼”(在经典平台上),就可以在近期的量子计算机上测试此类分类器。我们将这些实验结果与理论结果进行了比较,并提出了一些问题以供未来研究。© 2023 Elsevier BV 保留所有权利。
最近,[Wang et al ., Phys. Rev. Research 1, 033169 (2019)] 提出了量子策略非对称可区分性的资源理论。资源理论的基本对象是量子策略对,它们是量子通道的泛化,为描述任意量子相互作用提供了框架。在本文中,我们提供了该资源理论中一次性操作量的半定程序表征。然后,我们应用这些半定程序来研究自适应策略在广义振幅阻尼通道的鉴别和可区分性提炼中的优势。我们发现自适应策略与非自适应策略所能实现的目标之间存在显著差距。
最近,[Wang et al ., Phys. Rev. Research 1, 033169 (2019)] 提出了量子策略非对称可区分性的资源理论。资源理论的基本对象是量子策略对,它们是量子通道的泛化,为描述任意量子相互作用提供了框架。在本文中,我们提供了该资源理论中一次性操作量的半定程序表征。然后,我们应用这些半定程序来研究自适应策略在广义振幅阻尼通道的鉴别和可区分性提炼中的优势。我们发现自适应策略与非自适应策略所能实现的目标之间存在显著差距。
金属探测器广泛用于探测战争遗留爆炸物,如地雷和未爆炸弹药。几乎所有专业探测器都基于涡流原理。目前误报数量高达总警报数量的 99.9%。因此,排雷界非常需要专业地雷探测器增加鉴别能力。我们展示了两种互补的方法:使用垂直信号轮廓和水平空间图。这是通过在搜索头上添加垂直距离传感器和惯性定位单元来实现的。图像处理方法可用于区分金属压载物和危险物体。在本文中,我们展示了用于涡流成像的完全自主 3-D 定位单元开发的第一步。关键词:金属探测、地雷探测器、鉴别、信号高度分布、涡流
采用不同的 AI 模型和训练策略来分割每个染色中的结构,如细胞核、细胞和纤维化;然后提取形态和纹理特征。血液学家和血液病理学家的反馈也包含在训练过程中。此外,还开发了一个分类模型来分析 MGG 涂片上的细胞,预测 12 种不同的细胞类型。结合标记物、细胞类型和组织成分的百分比及其空间组织,整合在一起以解决项目的临床目标。可解释性和可解释性由 SHapley Additive exPlanations 方法 (SHAP) 实现。使用 Harrell 的一致性指数 (CI) 评估预后模型鉴别,并使用 L1 惩罚 Cox 回归进行特征选择。
3.1. 简介 19 3.2. 监测的一般原则 19 3.3. 空气或气体中氚的监测 21 3.3.1. 鼓泡器和被动采样器 21 3.3.2. 电离室方法 25 3.3.3. 比例计数器 30 3.3.4. HT-HTO 鉴别 31 3.3.5. 校准 33 3.3.6. 氚尘埃 34 3.4. 液体中氚的监测 34 3.4.1. 一般性讨论 34 3.4.2. 抓取样本 34 3.4.3. 液体闪烁计数 34 3.4.4. 闪烁流动池 35 3.5. 表面污染监测 36 3.5.1. 一般性讨论 36 3.5.2.涂片技术 37 3.6. 固体中氚的监测 37