上一章在场景中的一个点P的位置(在世界框架坐标p w)与像素坐标中的相应点P之间建立了数学关系,该点坐标被投影到相机的图像平面上。这种关系是基于针孔摄像机模型得出的,并且需要有关相机内在和外在参数的知识。尽管如此,即使在所有这些相机参数都知道的情况下,仍然不可能用单个图像重建P的深度(没有其他信息)。但是,在机器人技术的背景下,通过计算机视觉进行有关机器人环境结构的3 d信息通常是一项非常重要的任务(例如,避免障碍物)。因此,本章介绍了使用相机收集3 D信息的两种方法,即Motion 1,2的立体视觉和结构。1 R. Siegwart,I。R。Nourbakhsh和D. Scaramuzza。自动移动机器人简介。麻省理工学院出版社,2011
尽管对于静态针孔摄像头情况(第一个列),两种分布的分布都是一致的,但与基于EWA的基于EWA的估计值相比,基于UT的速度更为准确,而对于静态拟合摄像机案例(第三列),则在较高的非网络性非线性的情况下,UT可以使UT产生更好的近似值。用于滚动式摄像头姿势(第二和第四列),基于RS的UT-预测仍然可以很好地估计RS感知的MC介绍。相比之下,RS-Unaware EWA线性化分解,无法近似此情况(直方图域被封顶为0。04用于更清晰的可视化,但是基于EWA的投影仍具有较大KL值的较长尾巴分布)。在基于EWA的RS渲染中观察到的撕裂伪影是由这些不准确的程序引起的,导致在体积渲染步骤中导致不正确的像素到高斯的关联。
就填补低点而言,这是一件好事。但是我们确实使用了两种不同密度的填料 - 一种用于“大”工作,另一种用于针孔和划痕。在两种不同密度的填料上打磨至光滑表面是一件麻烦事,而且有几个地方很明显。解决方案很简单 - 使用一种填充方法(或者至少使最终表面处理都使用一种方法)。我们做的一件巧妙的事情是使用滚涂预涂水性“底漆”。这种简单的方法使我们能够在我们的低技术车间中填充和打磨到最后的涂漆阶段。对于油漆,我们选择了杜邦 Imron 6000,它实际上是一种新的聚氨酯基底/透明系统,而不是每个人在想到 Imron 时想到的传统单层聚氨酯。这是一种很棒的涂料,赋予了成品巨大的深度。但与任何基础/透明系统一样,它会夸大任何表面瑕疵的影响。
光片(HILO)激发3,用DNA-Paint 6以下达到5 nm 4,5以下的横向定位精度(S SMLM)。但是,这是以有限的穿透深度为代价的,TIR <250 nm,而Hilo 7,8的视野降低了〜40×10 µm 2。SMLM也可以在共聚焦设置中实现,包括点扫描和旋转磁盘共聚焦(SDC),这使得更深的样品渗透9,使其比较成像组织样品。图像扫描显微镜(ISM)10通过像素重新分配将共聚焦显微镜11,12的空间分辨率增加一倍,并且在与SMLM结合使用时,SMLM最近达到了8 nm的S SMLM,尽管小FOV的小FOV为8×8 µm 2 13。为了提高采集速度和FOV尺寸,SDC在旋转盘上采用数百个螺旋针孔,并与摄像机而不是单点检测器相结合。SDC构型已适用于SMLM,使用DNA-PART 14,使用DNA-Origami样品使用DNA-Origami样品达到8 nm的平面定位精度和基础平面中的细胞22 nm。仍然,由于发射光被光盘阻断,由于兴奋强度降低,可实现的分辨率仍受到限制。在2015年,Azuma及其同事提出了具有光子光子重新分配(SDC-EPR)15的增强的SDC,这是一系列微胶片,以有效降低针孔尺寸并增加光子收集,以改善分辨率。这些微漏物收缩了焦点双重,将发射的光子引导回可能的起源点(图1a)。因此,这提出了一个问题:SDC-opr的表现能否优于当前的光学配置,克服渗透深度,视野和空间分辨率之间的权衡?In this Brief Communication, we show that SMLM on a SDC- OPR fluorescence microscope can achieve sub-2 nm localization precision in the basal plane and sub-10 nm up to 7 µm penetration depth within a FOV of 53 × 53 µm 2 using a commercially available SDC-OPR (CSU-W1 SoRA Nikon system).通过可视化,以前所未有的分辨率来强调SDC-OPR的功能,在果蝇的视觉想象盘的视网膜上皮中的附着力连接。
本文介绍了一种用于机载摄像系统几何校准的实验室方法。该装置使用入射激光束,该光束由衍射光学元件 (DOE) 分成具有精确已知传播方向的多个光束。衍射图案的每个点代表无穷远点,并且对平移不变。单个图像足以按照使用针孔相机模型和失真模型的经典相机校准方法进行完整的相机校准。所提出的方法节省时间,因为不需要使用多幅图像的复杂束调整程序。它非常适合与框架相机系统一起使用,但原则上也适用于推扫式扫描仪。为了证明可靠性,将传统的测试场校准与所提出的方法进行了比较,结果显示所有估计的相机参数都略有不同。此外,还进行了 Zeche Zollern 参考目标的试飞。空中三角测量结果表明,使用 DOE 校准机载摄像系统是一种可行的解决方案。
摘要 原子层沉积(ALD)已成为当代微电子工业中不可或缺的薄膜技术。ALD 独特的自限制逐层生长特性使该技术能够沉积高度均匀、共形、无针孔的薄膜,并且厚度可控制在埃级,尤其是在 3D 拓扑结构上。多年来,ALD 技术不仅使微电子器件的成功缩小,而且还使许多新颖的 3D 器件结构成为可能。由于 ALD 本质上是化学气相沉积的一种变体,因此全面了解所涉及的化学过程对于进一步开发和利用该技术至关重要。为此,我们在本综述中重点研究 ALD 的表面化学和前体化学方面。我们首先回顾了气固 ALD 反应的表面化学,并详细讨论了与薄膜生长相关的机制;然后,我们通过比较讨论 ALD 工艺中常用的前体来回顾 ALD 前体化学;最后,我们有选择地介绍了 ALD 在微电子领域的一些新兴应用,并对 ALD 技术的未来进行了展望。
电动飞行 - Keith Shaw - 无线电控制运动飞行(来自《模型飞机新闻》出版商)- 1994 年 1 月 虽然为模型飞机提供动力的方法有很多种,但我认为电力具有几个突出的优势。尽管最常被提及的特点是清洁和噪音小,但真正的优势是可靠性、可重复性和多功能性。不可靠的电力系统是让未来的模型制作者最常遇到的挫折。有了电力,就不必启动故障的发动机,不必在旋转的切肉机附近摆弄针阀,不必担心怠速不稳或电热塞烧坏。不必再担心油箱位置、燃油管路中的针孔、油浸结构损坏、振动引起的无线电故障和设备老化。相反,你只需将飞机停在滑行道上,推进“油门”,滑行并起飞!电力的可重复性很强,如果你在飞机是新的时候可以做 20 个动作的特技表演,五年后,你仍然可以做同样的动作,无论夏天还是冬天,无论晴天还是雨天。电力也非常通用,因为发动机是
• 瞳孔 OD/OS、大小、反应性、眼睑下垂 • 视力:斯内伦视力表(可使用针孔矫正屈光)、色觉测试 • 视野:测试所有四个象限、中央视觉、忽视 • 眼底:评估视盘/脉管/静脉搏动/视网膜 • 眼外肌运动:双眼下收/内收、单眼旋转、对齐 • CN V / 面部感觉:LT/PP/温度、V1-V3 距离、角膜反射 • CN VII / 面部力量 — 评估上下面部对称性、听觉过敏、味觉障碍、角膜脱水 • CN VIII:听力 — 高/低音调、VOR、前庭测试(过去指向、福田台阶测试 — 闭眼原地踏步、Dix-Hallpike、Frenzel 镜片 — 眼球震颤) • 腭抬高 — 啊啊、呕吐、悬雍垂位置、肌阵挛 • CN XI:胸锁乳突肌强度/体积、斜方肌强度/体积 • CN XII - 舌头:位置、体积、肌束震颤、力量(舌头贴着脸颊)运动:
抽象准确地定位了3D声音源并估算其语义标签(其中可能不可见,但假定源位于场景中物体的物理表面上)具有许多真实的应用,包括检测气体泄漏和机械故障。在这种情况下,视听弱相关性在得出创新方法时提出了新的挑战,以回答是否或如何使用交叉模态信息来解决任务。朝着这一目标,我们建议使用由针孔RGB-D摄像头和共面四通道麦克风阵列(MIC-ARRAY)组成的声学相机钻机(MIC-Array)。通过使用此钻机来记录来自多视图的视听信号,我们可以使用跨模式提示来估计声源3D位置。特别是,我们的框架Soundloc3d将任务视为集合预测问题,集合中的每个元素都对应于潜在的声源。鉴于视听弱相关,首先是从单个视图mi-crophone阵列信号中学到的集合表示,然后通过主动合并从多视rgb-d图像揭示的物理表面提示来确认。我们证明了Soundloc3d在大型模拟数据集上的效率和优势,并进一步显示了其对RGB-D测量不准确性和环境噪声干扰的鲁棒性。
Perovskite单晶也已成为可以克服常见多晶膜的限制的替代材料平台。34–38对于钙钛矿膜和单晶,适当的合成方案均采用旨在制造高质量的钙钛矿材料和层以及满足给定应用程序特定需求的相关装置。然而,这些钙棍的软晶格构成了光滑的,无针孔的佩洛维斯风筝膜的几个挑战。39–49已经开发了许多方法来有效地合成和加工多晶膜和单晶层。这篇评论的目的是总结用于钙钛矿膜的最新方法,无论是多晶和单晶薄膜,并讨论用于沉积这种材料家族的每种方法所遇到的优点和障碍。本综述旨在全面,并详细描述用于用于卤化物钙钛矿薄膜和单晶的各种不同的过程。在呈现其制造方法之前,给出了基本卤化物材料材料的简要描述,旨在使论文不仅可以访问那些希望对整个领域的整体理解的人访问,还可以访问那些寻求有关某种类型沉积过程的基本信息的人。