完整作者列表: Yamashita, Koji;丰桥技术科学大学电气和电子信息工程系 Sawahata, Hirohito;国立技术学院茨城学院 Yamagiwa, Shota;丰桥技术科学大学电气和电子信息工程系 Yokoyama, Shohei;TechnoPro, Inc.,TechnoPro R&D,公司 Numano, Rika;丰桥技术科学大学电子学跨学科研究所 (EIIRIS);丰桥技术科学大学应用化学与生命科学系 Koida, Kowa;丰桥技术科学大学电子学跨学科研究所 (EIIRIS);丰桥技术科学大学计算机科学与工程系 Kawano, Takeshi;丰桥技术科学大学电气和电子信息工程系
场发射电推进 (FEEP) 基于从液态金属中提取和电离推进剂,该过程可以在 1Vnm -1 量级的场强下发生。为了达到必要的局部场强,液态金属通常悬浮在针状尖锐发射器结构上。已经研究了通过毛细管力进行被动推进剂输送的不同配置,包括毛细管几何形状、外部润湿针和多孔针状结构。液态金属的静电应力超过某个阈值会导致金属变形为泰勒锥 7 ,从而进一步增加锥顶点的局部场强,最终实现粒子提取。在 FEEP 装置中,静电势施加在金属发射器和称为提取器的对电极之间,其设计用于最大限度地提高发射离子的透明度。在这样的几何结构中,离子随后被用于提取和电离的相同电场加速,从而使该过程非常高效。
a. 日本丰桥技术科学大学电气与电子信息工程系 b. 日本茨城大学国立技术研究所 c. 日本 TechnoPro 公司,TechnoPro R&D 公司 d. 日本丰桥技术科学大学电子跨学科研究所 (EIIRIS) e. 日本丰桥技术科学大学应用化学与生命科学系 f. 日本丰桥技术科学大学计算机科学与工程系 摘要 微电极技术在电生理学中至关重要,并为神经科学和医学应用做出了贡献。然而,必须尽量减少与针状电极插入脑组织和植入手术相关的组织损伤,因为这些损伤使稳定的慢性记录变得不可能。在这里,我们报告了一种使用 5 微米直径针状电极的方法,该方法能够通过手术方法跟踪组织运动。电极用可溶解材料放置在小鼠的脑组织上,同时减少对组织的物理压力;然后将装置植入大脑,无需将其固定在颅骨上,同时在组织上实现电极浮动。该电极显示稳定的记录,6 个月内信噪比无明显下降,并且与使用具有相同针头几何形状的其他颅骨固定电极相比,组织损伤最小。
这些长度约0.5 µm的针状晶体嵌入氧化氢玻璃基质中。一起,这些材料成分结合在一起,形成了强大的增强,高密度的恢复材料。CEREC TESSERA块的致密晶体组成是其高强度的关键,并且实际上消除了微裂纹的存在和随后的裂纹传播。此处的原理类似于钢钢筋混凝土:在CEREC TESSERA块中,DiSilicate锂提供了压缩强度,而新形成的Virgilite则增加了预压应力。
特征杰克松也称为灰松树或磨砂松树。这个多年生常绿是一棵高度为15至40英尺的中小树。它的针状叶子很简单。这些很短(一对一,一英寸长),弯曲的深绿色叶子成对排列。树皮是红棕色,粗糙而鳞片状的。树枝苗条和深褐色。女性生殖结构以黄色的尖峰形成,可能长达一英寸半英寸。男性生殖结构以紫色小簇的形式承担。在一侧产生的曲线或凸起的锥体。每个锥体约为一半,长两英寸半英寸。锥体内的非常小的种子是三角形的和有翼的。
电弧增材制造零件性能的提升依赖于结构创新和定制打印,自然优化的结构可以为设计制造提供灵感。本文以Crysomalon squamiferum壳的生物结构为灵感,采用多丝电弧增材制造(MWAAM)技术设计并制备了层状TC4/Nb多材料合金零件。利用EDS、SEM、EBSD和力学性能试验机研究了MWAAM加工仿生异质TC4/Nb多材料合金零件的界面反应、相组成、微观组织演变、晶体生长、力学性能和裂纹扩展。结果表明,MWAAM TC4/Nb多材料合金试样不同层间形成了良好的冶金结合;Ti/Nb多材料合金零件主要由α-Ti、β-Ti和(Nb,Ti)固溶体相组成。随着Nb含量的增加,从TC4层到G1层,相形貌经历了一个连续的转变过程:片层状α+β→细片层状α+短棒状α+β→针状α+β→细针状α+β。此外,随着Nb含量的增加,TC4/Nb多材料合金组分从TC4层到G2层的晶粒尺寸由3.534μm逐渐减小到2.904μm。TC4/Nb多材料合金从TC4层到G2层的显微硬度范围为404.04~245.23HV。TC4/Nb多材料合金试样具有较高的压缩强度和极限拉伸强度分别为2162.64±26MPa和663.39MPa,对应的应变量分别为31.99%和17.77%。优异的力学行为主要归因于层间晶粒尺寸的梯度转变和组织演变的良好结合;拉伸试验过程中裂纹扩展主要以裂纹偏转和多级开裂为主;TC4/Nb多材料合金构件中TC4层的强度高于G1层和G2层。
电弧增材制造零件性能的提升依赖于结构创新和定制打印,自然优化的结构可以为设计制造提供灵感。本文以Crysomalon squamiferum壳的生物结构为灵感,采用多丝电弧增材制造(MWAAM)技术设计并制备了层状TC4/Nb多材料合金零件。利用EDS、SEM、EBSD和力学性能试验机研究了MWAAM加工仿生异质TC4/Nb多材料合金零件的界面反应、相组成、微观组织演变、晶体生长、力学性能和裂纹扩展。结果表明,MWAAM TC4/Nb多材料合金试样不同层间形成了良好的冶金结合;Ti/Nb多材料合金零件主要由α-Ti、β-Ti和(Nb,Ti)固溶体相组成。随着Nb含量的增加,从TC4层到G1层,相形貌经历了一个连续的转变过程:片层状α+β→细片层状α+短棒状α+β→针状α+β→细针状α+β。此外,随着Nb含量的增加,TC4/Nb多材料合金组分从TC4层到G2层的晶粒尺寸由3.534μm逐渐减小到2.904μm。TC4/Nb多材料合金从TC4层到G2层的显微硬度范围为404.04~245.23HV。TC4/Nb多材料合金试样具有较高的压缩强度和极限拉伸强度分别为2162.64±26MPa和663.39MPa,对应的应变量分别为31.99%和17.77%。优异的力学行为主要归因于层间晶粒尺寸的梯度转变和组织演变的良好结合;拉伸试验过程中裂纹扩展主要以裂纹偏转和多级开裂为主;TC4/Nb多材料合金构件中TC4层的强度高于G1层和G2层。
摘要。NR600 视网膜假体装置是一种独特的新开发植入物,旨在帮助因视网膜退行性疾病而失去视力的人恢复视觉感知。微型植入物代替受损的感光细胞捕捉视觉图像,并产生激活保存的视网膜细胞层所需的电刺激。NR600 系统将视觉信号转换成电信号,并通过针状电极阵列传送到视网膜,以最大限度地降低电激活水平并改善刺激定位。NR600 由两部分组成:微型植入式芯片和患者佩戴的眼镜。眼镜提供电力并控制植入式装置。在本报告中,我们介绍了 NR600 系统设计、其光学、电气和电化学特性以及来自人类受试者的初步结果。
过热是一种严重影响电子设备可靠性的故障模式。所有电子设备,包括驱动牵引电机的三相逆变器,都会产生热量。需要通过冷却来控制散热,以防止过热。可以通过增加冷却或减少散热来避免过热。三相逆变器的散热是由金属氧化物半导体场效应晶体管 (MOSFET) 的内阻、开关损耗和其他因素引起的。三相逆变器的冷却可以使用水冷却剂或空气冷却剂。冷却系统基于产生的热量。三相逆变器的冷却可以使用空气冷却剂,并增加散热器的表面积。散热器使用铝材料,通常称为针状翅片。市场上有各种铝。我们根据 MOSFET 的内阻、开关损耗和其他因素计算了发热量。我们使用热像仪通过实验验证了模拟结果。因此,我们可以找到三相逆变器冷却系统的最佳数量、尺寸和铝翅片类型。
电压监测 - BMS系统最直接的方面之一是监视锂离子电池电压,必须将其保持在上限内(通常约为4.2伏左右)和下限(通常为2.0伏)以防止对电池的永久损害。在充电过程中,如果电压增加了推荐的上部电池电压,通常为4.2伏,则过量的电流可能会流过电池电池。多余的电流促进金属锂在石墨阳极表面的沉积。这减少了可用于反应的游离锂离子的数量,因此可能导致细胞容量的不可逆转。锂的镀层也会形成尖峰,针状晶体,称为树突,可以生长到足够大以至于到达阴极并缩短细胞,并可能引起火。过多的电流还会导致细胞的加热增加,并伴随着包装温度的升高