1个新加坡Nanyang Avenue 639798的Nanyang Technological University的计算机科学与工程学院; Arumugam004@e.ntu.edu.sg 2社会科学学院(SSS),Nanyang Technological University,新加坡639818,新加坡; bhattacharya.sagarika7@gmail.com(S.B. ); annabelchen@ntu.edu.sg(S.H.A.C.) 3 Nanyang Technological University,新加坡637460的Nanyang Technology University的研究与开发中心,新加坡4神经影像学和介入放射学系,国家心理健康与神经科学研究所,印度班加罗尔560029,印度班加罗尔560029; drroseedawn@nimhans.kar.nic.in 5 560029,班加罗尔560029,美国心理健康与神经科学研究所神经生理学系; kaviudupa.nimhans@nic.in 6美国马里兰州巴尔的摩约翰·霍普金斯大学医学院; koishi@mri.jhu.edu(k.o. ); jdesmon2@jhmi.edu(J.E.D。) 7 Nanyang Technological University,新加坡637553,新加坡8号Nanyang Technology University,Nanyang Technitute of Nanyang Technological University,新加坡637553,新加坡 *通讯 *通讯:Rajankashyap6@gmail.com(R.K.) ctguan@ntu.edu.sg(c.g.) †高级作家。 ‡同等贡献。1个新加坡Nanyang Avenue 639798的Nanyang Technological University的计算机科学与工程学院; Arumugam004@e.ntu.edu.sg 2社会科学学院(SSS),Nanyang Technological University,新加坡639818,新加坡; bhattacharya.sagarika7@gmail.com(S.B.); annabelchen@ntu.edu.sg(S.H.A.C.)3 Nanyang Technological University,新加坡637460的Nanyang Technology University的研究与开发中心,新加坡4神经影像学和介入放射学系,国家心理健康与神经科学研究所,印度班加罗尔560029,印度班加罗尔560029; drroseedawn@nimhans.kar.nic.in 5 560029,班加罗尔560029,美国心理健康与神经科学研究所神经生理学系; kaviudupa.nimhans@nic.in 6美国马里兰州巴尔的摩约翰·霍普金斯大学医学院; koishi@mri.jhu.edu(k.o. ); jdesmon2@jhmi.edu(J.E.D。) 7 Nanyang Technological University,新加坡637553,新加坡8号Nanyang Technology University,Nanyang Technitute of Nanyang Technological University,新加坡637553,新加坡 *通讯 *通讯:Rajankashyap6@gmail.com(R.K.) ctguan@ntu.edu.sg(c.g.) †高级作家。 ‡同等贡献。3 Nanyang Technological University,新加坡637460的Nanyang Technology University的研究与开发中心,新加坡4神经影像学和介入放射学系,国家心理健康与神经科学研究所,印度班加罗尔560029,印度班加罗尔560029; drroseedawn@nimhans.kar.nic.in 5 560029,班加罗尔560029,美国心理健康与神经科学研究所神经生理学系; kaviudupa.nimhans@nic.in 6美国马里兰州巴尔的摩约翰·霍普金斯大学医学院; koishi@mri.jhu.edu(k.o.); jdesmon2@jhmi.edu(J.E.D。)7 Nanyang Technological University,新加坡637553,新加坡8号Nanyang Technology University,Nanyang Technitute of Nanyang Technological University,新加坡637553,新加坡 *通讯 *通讯:Rajankashyap6@gmail.com(R.K.) ctguan@ntu.edu.sg(c.g.) †高级作家。 ‡同等贡献。7 Nanyang Technological University,新加坡637553,新加坡8号Nanyang Technology University,Nanyang Technitute of Nanyang Technological University,新加坡637553,新加坡 *通讯 *通讯:Rajankashyap6@gmail.com(R.K.) ctguan@ntu.edu.sg(c.g.)†高级作家。‡同等贡献。
需求是由于粘合材料不良,非平板粘合表面,奇数包装情况还是仅仅是由于对高可靠性的需求;通过正确使用辅助电线,通常可以大大提高线键互连的完整性。辅助电线定义为安全线,安全凸起或隔离针迹(又称凸起的针迹)。旧的待命安全线已经成为一项资产已有几十年了,但是,这被安全颠簸所取代,安全性需要较小的第二键终止区域。此外,僵持针迹(SOS)具有更多的应用程序,并且还具有许多侧面好处,可以将其纳入电路设计中,以获得更好的电线强度性能,更少的互连(死于死亡结合)和较低的环路。隔离针键键合涉及将球碰撞放置在电线互连的一端,然后将电线与另一个球放在互连的另一端,并在先前放置的球碰撞上缝线。这会导致几乎均匀的针键键互连到颠簸,并具有固有的针键键拉力强度的改善。SOS的另一种用途是反向键(在模具键垫上的颠簸上的针键键),通常会导致比标准前向线环的较低的环轮廓,并且环路更强,因为电线尚未在球上方退火(在热影响的区域)。实施SOS的主要障碍是视觉检查员的重新培训和质量部门的批准。
引言 2019 年底,中国武汉出现了一批原因不明的肺炎患者 [1]。随后,世界卫生组织(WHO)于 2020 年 2 月 11 日根据其术语宣布了这种新型冠状病毒肺炎的标准格式:2019 冠状病毒病(COVID-19)。目前,透皮给药系统使用最多的方法是外用药膏、透皮贴剂、皮下针。由于皮肤角质层的存在,作为分子的屏障,只有极少数分子能够到达作用部位,因此该方法中使用的大多数药物和药剂的效果都很低 [2]。因此,透皮给药系统得到了发展,出现了另一种称为微针的方法。微针是一种智能方法,也是一种新型的透皮给药系统,它增加了将药物输送到作用部位的潜力。它是一种高度为 10-2000 微米、宽度为 10-50 微米的微型针,可无痛地直接穿透真皮组织。微针可以输送不同大小和形式的分子。它被认为是一种药物和疫苗输送装置。它可以装入活病毒或灭活病毒疫苗、DNA 疫苗或抗原。空心微针在流感疫苗接种中得到广泛应用。微针有许多优点,因为它的给药可行且无痛,它增加了皮肤的渗透性,并能输送不同大小的药物和疫苗[3]。如今,许多研究已经注册,以研究微针的效果
本演示文稿包含有关未来结果,绩效和成就的前瞻性陈述,这些陈述受风险和不确定性的影响,并反映了由可用信息形成的管理层的观点和假设。历史事实陈述以外的所有陈述都是可以认为是前瞻性陈述的陈述。在此文档中使用时,诸如“预期”,“相信”,“估计”,“期望”,“打算”,“五月”,“计划”,“项目”或“应该”和类似表达式(与佳能相关的表达)之类的词,旨在识别前瞻性陈述。Many factors could cause the actual results, performance or achievements of Canon to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements, including, among others, changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products by other companies, lack of acceptance of new products or services by Canon's targeted customers, inability to meet efficiency and cost reduction objectives, changes in business strategy and various其他因素,均在本演讲中引用和未引用。应实现一个或多个风险或不确定性,或者基本假设证明不正确,实际结果可能与本文所述的结果有很大不同。佳能不打算或承担更新这些前瞻性语句的任何义务。
本演示文稿包含有关未来结果,绩效和成就的前瞻性陈述,这些陈述受风险和不确定性的影响,并反映了由可用信息形成的管理层的观点和假设。历史事实陈述以外的所有陈述都是可以认为是前瞻性陈述的陈述。在此文档中使用时,诸如“预期”,“相信”,“估计”,“期望”,“打算”,“五月”,“计划”,“项目”或“应该”和类似表达式(与佳能相关的表达)之类的词,旨在识别前瞻性陈述。Many factors could cause the actual results, performance or achievements of Canon to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements, including, among others, changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products by other companies, lack of acceptance of new products or services by Canon's targeted customers, inability to meet efficiency and cost reduction objectives, changes in business strategy and various其他因素,均在本演讲中引用和未引用。应实现一个或多个风险或不确定性,或者基本假设证明不正确,实际结果可能与本文所述的结果有很大不同。佳能不打算或承担更新这些前瞻性语句的任何义务。
4.1 AHG WA (2015) Pty Ltd T/A Mercedes-Benz Perth & Westpoint Star Mercedes-Benz & Ors v Mercedes-Benz Australia/Pacific Pty Ltd [2023] FCA 1022 ..............................................................24 4.2 Honda Australia ordered to pay significant damages to Astoria Brighton - Brighton Automotive Holdings Pty Ltd (as trustee for Brighton Honda Unit Trust) v Honda Australia Pty Ltd (No 2) [2024] VSC 262 ............................................................................................................................................26 4.3 Glascott v Mercedes-Benz Financial Services Australia Pty Ltd [2024] QDC 127 .............................27 4.4 Honda Australia Fined for Breach of Information Sharing Requirements under the MVIS Scheme29 4.5 Wawryk v Mercedes-Benz Australia/Pacific Pty Ltd (Subpoena Ruling) [2024] VSC 120.................30 4.6 Automotive Invest Pty Limited v Commissioner of Taxation [2024] HCA 36 ...................................32 4.7 Williams v Toyota Motor Corp Australia [2022] FCA 344;丰田汽车公司澳大利亚有限公司诉威廉姆斯(第2号)[2023] FCAFC 70; Williams v Toyota Motor Corp Australia Ltd (ACN 009 686 097) [2024] HCATrans 21 (awaiting decision) .....................................................................................................34 Our National Automotive Team ........................................................................................................36
成本降低是最近向CU线键合的主要驱动力,主要是AU线粘结。包装的其他成本降低来自基板和铅框架的新开发项目,例如预镀框(PPF)和QFP和QFN的UPPF降低了镀层和材料成本。但是,由于粗糙的smface饰面和薄板厚度,第二个键(针键键)在某些新的LeadFrame类型上可能更具挑战性。pd涂层的Cu(PCC),以通过裸铜线改善电线键合工艺,主要是为了提高可靠性并增强了S TCH键过程。需要进行更多的FTMDAMENTALS研究来了解粘结参数和粘结工具的影响以提高针迹键合性。在本研究中研究了Au/Ni/pd镀的四型扁平铅(QFN)PPF底物上直径为0.7 mil的PCC电线的针键键过程。两个具有相同几何形状但不同的s脸的胶囊用于研究Capillruy Smface饰面对针键键过程的影响。两种毛细血管类型是一种抛光的饰面类型,用于AU线键合,而颗粒•饰面毛细管具有更粗糙的smface fmish。比较铅(NSOL)ATLD SH01T尾巴之间的过程窗口。研究了过程参数的影响,包括粘结力和表SCMB扩增。过程窗口测试结果表明,颗粒毛细管具有较大的过程窗口,并且SH01T尾巴OCCTM的机会较低。在所有三个Pru·emeter套件中,颗粒状的毛细血管均显示出更高的粘结质量。较高的SCMB振幅增加了成功SS的机会 - 填充针键键的fonnation。ftnther比较了毛细血管smface饰面,3组参数se ttings ttings ttings ttings具有不同的键atld scmb a振幅ru·e测试。与抛光类型相比,Grrumlru·capillruy产生了更高的针迹拉力强度。开发了该过程的有限元模型(FEM),以更好地了解实验性OB使用。从TL1E模型中提取了电线和亚种界面处的电线的Smface膨胀(塑性脱节),并归因于粘附程度(键合)。该模型用于与不同的Smface饰面相连(键合)的实验观察。
摘要:DNA 疫苗与其他类型的疫苗相比具有固有的优势,包括安全性、快速设计和构建、易于制造和快速生产以及热稳定性。然而,通过针头和注射器输送的候选 DNA 疫苗的一个主要缺点是与 DNA 的低效细胞摄取相关的较差的免疫原性。这种摄取至关重要,因为目标疫苗抗原是在细胞内产生的,然后呈递给免疫系统。已经采用了多种技术来增强 DNA 疫苗的免疫原性和保护效力,包括物理输送方法、分子和传统佐剂以及基因序列增强。无针注射系统 (NFIS) 是一种有吸引力的替代方案,因为它可以诱导强大的免疫原性、增强的保护效力并消除针头。这些优势使该领域取得了里程碑式的成就,一种仅通过 NFIS 输送的针对 COVID-19 的 DNA 疫苗被批准在紧急情况下限制使用。在本综述中,我们讨论了 DNA 疫苗的物理递送方法,重点介绍了市售的 NFIS 及其安全性、免疫原性和保护效力。正如所讨论的,与针头和注射器相比,NFIS 递送的预防性 DNA 疫苗往往会诱导不低于电穿孔的免疫原性和增强的反应。