光生电荷产生范围很宽且可调,[4] 而且载流子迁移率高,扩散长度可达几微米。[5–7] 在任何光收集装置中,合适的接触对于有效收集光生电荷并将其输送到外部电路都至关重要。接触负责提供内在不对称性,以产生提取光生载流子的驱动力;[8] 这种内在不对称性可以通过动力学选择性(扩散控制)或电极之间的能量失配(漂移控制)来建立。一般的薄膜太阳能电池由活性层、夹在空穴提取阳极接触和电子提取阴极接触之间组成。在光照下,活性层内产生的电荷载流子将漂移扩散到接触处,并通过内在不对称性被提取,从而产生净光电流。有机太阳能电池的特点是载流子迁移率低、扩散长度短,因此需要在活性层上建立强大的内建电场以提高电荷提取率并避免复合。[9–11] 该电场由内建电位V bi (或接触电位) 引起,该电位源于阳极和阴极之间的功函数差异,由于有机半导体的介电常数相对较低,因此基本上不受屏蔽。相反,在钙钛矿太阳能电池中,载流子扩散长度为几微米,在没有电场的情况下,光生电荷应该能够毫不费力地穿过 200–500 纳米的活性层而不会复合。因此,只要能确保接触处的动力学选择性[12],电荷收集预计将由扩散控制[8,13],人们正在沿着这个思路达成共识。通过在电极和活性层之间采用单独的电荷传输层 (CTL) 来实现动力学选择性,从而形成 n–i–p 或 p–i–n 型器件架构,其中阳极处为空穴传输层 (HTL,p 层),阴极处为电子传输层 (ETL,n 层)。在理想情况下,这些层能够传导多数载流子,同时防止少数载流子的提取,从而为扩散驱动的电荷收集创建优先方向。在这种电荷提取要求的框架内,对于内置电位的确切作用以及负责电荷提取的驱动力的确切性质仍然存在一些猜测。
©2022 Wiley -VCH GMBH。保留所有权利。本文只能下载供个人使用。任何其他用途都需要事先获得版权持有人的许可。记录的版本可在线网上在http://doi.org/10.1002/adma.202109157获得。
Righetto,M.,Meggiolaro,D.,Rizzo,A.,Sorrentino,R.,He,Z.,Meneghesso,G.,。 。 。 Lamberti,F。(2020)。 将卤化物钙钛矿与不同的材料耦合:从掺杂到纳米复合材料,超越光伏。 材料科学的进展,110,100639-。 doi:10.1016/j.pmatsci.2020.100639Righetto,M.,Meggiolaro,D.,Rizzo,A.,Sorrentino,R.,He,Z.,Meneghesso,G.,。。。Lamberti,F。(2020)。 将卤化物钙钛矿与不同的材料耦合:从掺杂到纳米复合材料,超越光伏。 材料科学的进展,110,100639-。 doi:10.1016/j.pmatsci.2020.100639Lamberti,F。(2020)。将卤化物钙钛矿与不同的材料耦合:从掺杂到纳米复合材料,超越光伏。材料科学的进展,110,100639-。doi:10.1016/j.pmatsci.2020.100639
已显示几种可降低LDL胆固醇的药物,随后降低了心脏病发作和中风的风险。如果您的冠状动脉钙评分高于100,则应考虑服用药物以降低LDL水平。即使是LDL的少量减少也已显示可降低心脏事件的风险。LDL的理想水平小于70mg/dl。
图 3. ML 方法对钙钛矿与非钙钛矿进行分类。a. 根据数据集中 XRD 模式范围(2 )的 CNN 预测准确度,b. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵真阴性,c. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵假阳性,d. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵假阴性,e. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵真阳性,f. XRD 模式(d 间距(Å))对于随机森林分类的特征重要性(步长:2.18°(2 ))。
钙钛矿结构 [1] 及其几乎无限适应性的衍生物阵列,必须算作材料科学中最重要的结构之一,其基本的 ABX 3(A = 大阳离子;B = 较小的阳离子;X = 阴离子)结构原型有助于铁电、[2] 压电、[3] 超导、[4] 光化学 [5] 和许多其他重要的技术特性。近来,随着混合 [3,6–8] 或全无机卤化物钙钛矿 ABX [9,10] 结构制造技术的快速发展,人们对钙钛矿的兴趣进一步增加。其中 A 是有机或碱金属反离子,B 通常是铅或锡,X 是卤素,这使得具有光学和光伏特性的材料 [11,12] 可用于太阳能电池、[13,14] 离子导电材料、[15] 超级电容器 [16] 和其他储能设备 [17]。然而,块状卤化物钙钛矿具有反应性,容易发生表面水合 [18] 相变 [19,20] 和高缺陷密度 [21],从而降低了其性能和寿命。因此,人们开发出了降维卤化物钙钛矿,重点关注胶体、[22] 二维、[23] 量子点、[24] 以及薄膜中的分子级 [25] 制备。虽然在如此低的维度上形成钙钛矿可以增强一些理想的特性,但也会增加其降解的趋势,尽管表面钝化可以减少薄膜中的分解。[26] 尽管如此,维度在纳米尺度上仍然是设计和微调卤化物钙钛矿物理性质的关键,因为它在决定电子结构方面起着关键作用。[27]
Baba , A.、Bai , D.、Sadoh , T.、Kenjo , A.、Nakashima , H.、Mori , H. 和 Tsurushima , T. (1997)。硅晶体中辐射诱导缺陷和非晶化的行为。物理研究中的核仪器和方法。 B 部分:光束与材料和原子的相互作用,121(1 – 4),299 – 301。,Li,X.,Qi,J.,Yu,D.,Li,J.和Gao,P.(2018)。从原子尺度洞察甲基铵碘化铅钙钛矿的结构不稳定性及其分解途径。自然通讯, 9 (1), 4807。陈绍军, 张颖, 张鑫, 赵建, 赵哲, 苏鑫, 华哲, 张建, 曹建, 和冯建军 (2020)。有机-无机杂化钙钛矿通过中间超结构的一般分解途径及其抑制机制。先进材料, 32 (29), 2001107。Cortecchia, D., Lew, K. C., So, J.-K., Bruno, A., & Soci, C. (2017)。多维钙钛矿薄膜中自组织异质相的阴极发光。材料化学, 29 (23), 10088 – 10094。Dar, MI、Jacopin, G.、Hezam, M.、Arora, N.、Zakeeruddin, SM、Deveaud, B.、Nazeeruddin, MK 和 Grätzel, M. (2016)。 CH3NH3PbI3-xBr x 钙钛矿单晶中的不对称阴极发光发射。 ACS Photonics, 3 (6), 947 – 952。Divitini, G., Cacovich, S., Matteocci, F., Cinà, L., Di Carlo, A., & Ducati, C. (2016)。原位观察钙钛矿太阳能电池的热致降解。自然能量, 1 (2), 15012。http://dx.doi.org/10.1037/0021-843X.111.1.15012 Drouin, D., Couture, R., Joly, D., Tastet, X., Aimez, V., & Gauvin, R. (2007)。 CASINO V2.42 — 为扫描电子显微镜和微分析用户提供快速且易于使用的建模工具。扫描, 29 (3), 92 – 101。Ferrer Orri, J.;莱内曼,J.;普雷斯塔特,E.;约翰斯通,DN; Tappy,N.LightSpy。 2021. Giannuzzi, LA、Geurts, R. 和 Ringnalda, J. (2005)。 2 keV Ga + FIB 铣削可减少硅中的非晶损伤。显微镜和微分析,11(S02),828-829。离子偏析对混合卤化物钙钛矿薄膜局部光学特性的影响。纳米快报, 16 (2), 1485 – 1490。Hidalgo, J., Castro-Mendez, A., & Correa-Baena, J. (2019)。钙钛矿太阳能电池的成像和映射表征工具。先进能源材料, 9 (30), 1900444。Huh, Y., Hong, K. J., & Shin, K. S. (2013)。聚焦离子束铣削在金属和电子材料中引起的非晶化。显微镜和微分析,19 (S5),33 – 37。Jeangros, Q., Duchamp, M., Werner, J., Kruth, M., Dunin-Borkowski, RE, Niesen, B., Ballif, C., & Hessler-Wyser, A. (2016)。原位 TEM 分析