副本编号 37 – 上尉 C. M. Tooke,美国海军,舰船局 – 主席 副本编号 38 – 上尉 R. A. Himers,美国海军,DavidTaylor 模型盆地 副本编号 39 – 指挥官 RH Lembert,美国海军,舰船局 副本编号 27 – 指挥官 RD Schmidtman,美国海岸警卫队总部 副本编号 1!Jo,40 – WG Frederick,美国海事委员会 副本编号 Q – HubertKempel,战争部运输主管办公室 副本编号 25 – KathewLetich,美国航运局 副本编号 26 – JamesMcIntosh,美国海岸警卫队 副本编号 42 – R. i!I. Robertson,海军研究办公室,美国海军副本编号 43 - VL Russo,美国海事委员会副本编号 10,30 - RE Wiley,舰船局,海军部副本编号 31 - JL Filson,美国航运局副本编号 16 - Finn Jonassen,联络代表,NRC 副本编号 44 - EH Davidaon,联络代表,AISI 副本编号 45 - Pafi Gerhart,联络代表,AISI
神户制钢所的前身铃木商店以“增进国家利益”为企业理念,致力于实现日本依赖进口的工业产品的国产化,并将这一理念传承给了本公司。神户制钢所以重工业领域的“日本工业独立”为使命,不仅在钢铁领域,还在铝、铜、机械、工程、建筑机械等行业推出了许多日本首批国产产品。二战结束后仅三个月,本公司就恢复了线材生产,为日本的早期复兴做出了贡献。1995年的阪神淡路大地震中,本公司遭受了巨大损失,神户工厂(现神户线材工厂)的高炉也遭到破坏。原本预计需要六个月才能修复的高炉,在短短两个半月内就修复完毕,成为神户市震后复兴的象征。自创业以来,神钢集团一直秉持“不遗余力地为社会做贡献”的精神,如今已成为神钢集团的核心价值,致力于通过技术、产品和服务实现可持续发展的社会。
神经网络使我们能够模拟 QSTE340TM 钢的疲劳寿命,并有效预测材料在循环载荷下的裂纹扩展。我们根据 [7] 中获得的实验数据建立了函数依赖关系模型。数据集 [8] 包含裂纹长度 a 与载荷循环数 N 的依赖关系,其中四个应力比 R 分别为 R = 0.1、0.3、0.5 和 0.7,在恒定振幅 (CA) 下,以及在单次拉伸过载后,过载比 Rol = 1.5、2.0。神经网络在一个数据集上训练,其中输入参数为载荷循环数 N 、应力比 R 和过载比 Rol ,输出参数为裂纹长度 a 。载荷循环 N 反映了钢的载荷循环数,是评估疲劳裂纹扩展的主要参数之一。应力比 R 决定了循环中最小载荷和最大载荷的比率,这也会影响疲劳裂纹发展的速度。过载率 Rol 考虑负载超过标称值的情况。
船舶和其他结构中使用的钢材的断裂行为主要受以下因素控制:(1) 使用条件,即载荷速率和环境温度;(2) 钢材的机械性能;(3) 结构的设计和制造;以及 (4) 操作条件。使用条件影响机械性能,因为不同钢种的机械性能对载荷速率和温度的反应不同。设计和制造,包括构件的冗余和结构细节的局部几何形状(应力集中),决定了局部应力的大小和分布以及结构对外部施加载荷的响应。装载船舶的程序会影响操作条件。因此,在制定结构部件的断裂控制计划和评估极高加载速率对断裂控制的影响时,必须考虑所有这些因素。!!c,但是,由于改变加载速率的主要影响是改变钢材的机械性能,因此本文将重点讨论速率对钢材强度和断裂特性的影响。
⚫ 通过“提高盈利能力,追求增长”和“迎接实现碳中和的挑战”等举措以及强化可持续经营的举措,在发挥集团特色、提高企业价值的同时,提供满足社会需求的解决方案。
地震在世界各地肆虐,对建筑物造成了大量破坏,但仍有许多建筑物不符合现行抗震规范要求,因此需要进行抗震加固。在许多情况下,地震引起的破坏主要集中在低层钢筋混凝土 (RC) 结构上,这些结构的基本自振周期接近地震的主频。人们提出了不同的方法来减轻结构响应并耗散地震引起的能量 (Kim 2019)。增加钢支撑等额外刚度是传统且广泛使用的抗震加固技术 (Park et al . 2012, Maheri and Yazdani 2016, Mohammadi et al . 2020))。此外,采用狭缝阻尼器等金属耗能装置也被认为是结构抗震设计和加固的另一种有效手段(Zhang et al. 2015;Lee and Kim 2017;Javidan and Kim 2020;Dereje and Kim 2022)。
3.1 范围。 3.1.1 承包商应分三个阶段开展本项目所需的工作:i. 文献综述 ii. 实验 iii. 数据分析和报告 3.1.2 在第 1 阶段,承包商应确定使用断裂力学理论选择低温应用钢材以及厚度和钢材韧性之间关系的最新理解。 3.1.3 在第 2 阶段,承包商应进行断裂力学试验,以得出常用缺口韧性钢的适用性标准。 3.1.4 在第 3 阶段,承包商应制定更通用的方法,以将该方法应用于船舶建造项目钢材等级的可接受性论证。 3.2 任务。 3.2.1 项目的每个阶段都应通过一项或多项任务来完成。 3.2.2 在第 1 阶段,承包商应进行全面的文献综述,以选择适合船舶建造的一系列厚度的低温(非低温)钢结构的断裂力学标准。这次审查不仅涵盖造船业,还涵盖石油和天然气、采矿、铁路和其他相关行业。 3.2.3 在第 2 阶段,承包商应:i. 制定适当的测试程序,供技术委员会批准。作为初步指导,预计这将涉及使用 CTOD(裂纹尖端张开位移)方法对单一钢种(AH 或 EH)进行测试
弗吉尼亚州阿灵顿 22201 FHWA 15.补充说明 FHWA 合同官员代表:Melonie Barrington,P.E.,PMP FHWA 技术经理:Brian M. Kozy,Ph.D.,P.E.Michael Baker 首席研究员:Mary P. Rosick,P.E.Michael Baker 项目经理:Kenneth E. Wilson,P.E.,S.E.,PMP 16.摘要 本手册解释了与钢桥疲劳和断裂相关的问题,包括分析、设计、评估、修复和改造。第 1 章介绍了疲劳和断裂,以及参考手册的介绍。第 2 章首先讨论钢结构中的开裂,包括裂纹行为、钢结构中不连续性的来源、影响疲劳和断裂的应力性质以及钢的脆性和延性行为。第 3 章提供断裂力学的基础知识,涵盖断裂控制、疲劳开裂评估和断裂力学作为定量工具等主题。第 4 章描述疲劳行为,包括不连续性和应力集中、生产和制造对疲劳的影响、作为设计极限基础的测试以及环境影响。第 5 章描述疲劳分析,并提供近似和精细分析方法的信息,包括局部应力分析。第 6 章介绍了 AASHTO LRFD 桥梁设计规范中提出的疲劳设计方法,并解释了基本疲劳极限状态方程、各种 AASHTO 疲劳细节类别、有限寿命和无限寿命之间的差异以及疲劳应力范围和分解公称抗力的计算,包括疲劳的分步设计示例。第 7 章介绍了断裂控制,包括设计、制造和检查,并涵盖了冗余、约束诱导断裂和总断裂控制计划等主题。第 8 章介绍了 AASHTO 疲劳评估方法,包括剩余疲劳寿命评估、基于 AASHTO 桥梁评估手册的疲劳寿命估计以及“负剩余寿命”桥梁细节的剩余疲劳寿命。第 9 章介绍了结构的评估、修复和改造,并提供了几种常见疲劳细节、一般修复和改造策略以及约束引起的断裂、超高车辆碰撞和适用性分析的描述。最后,第 10 章介绍了非焊接部件,例如组合构件、螺栓和杆以及混凝土钢筋。此外,附录 A 描述了基于 SHRP2 项目 R19B 的疲劳校准。
(ASTM 特殊技术出版物;909)“ASTM 出版物代码 (PCN) 04-909000-35。”包括目录和索引。I. 核压力容器——大会。2. 钢铁——辐射对大会的影响。I. Steele, LE (Lendell E.),1928-。II. 国际原子能机构。III. ASTM 委员会 E-10 核技术和应用。IV. 系列。TK921I.5.R34 1986 621.48'332 86-10811 ISBN 0-8031-0473-1