摘要 - 在下一代集中式或云无线电访问网络(C-RAN),时间和波长分层多路复用的光学网络(TWDM-PON)已被广泛认为是构建移动式fronthaul的有前途的候选人。考虑到C-RAN中严格的带宽效率,潜伏期和成本要求,对于基于TWDM-PON的Fronthaul,非常需要效率的带宽和波长分配方案。尤其是对于启用波束形成的大量多个输入多个输出(MMIMO),需要在TWDM-PON中以带宽和波长资源共同分配附加的无线电资源。在本文中,我们将联合分配概率提出为整数线性编程数学模型,并提出了基于TWDM-PON-基于MMIMO Fronthaul网络的能量结构的基于能量良好的架构的深入增强学习(RL)的联合分配方案。所提出的方案将启发式无线电资源分配算法与基于RL的波长分配模型相结合,以优化在下游方向共同共同优化Fronthaul带宽,无线电资源和波长利用率。仿真结果表明,所提出的方案具有较高的带宽效率和高无线电源造成的,与基准相比,与基准相比,降低了波长的使用,并降低了波长的使用。
摘要。优化工业过程(例如制造或处理特定材料的加工)构成了许多研究人员的兴趣,并且其应用不仅可以导致加快相关过程的加快,还可以减少它们在它们期间产生的能源成本。本文介绍了一种优化计算机数字控件(CNC)计算机主轴运动的新方法。提出的解决方案是使用深度学习并加强绘制行业中使用的参考点实现优化(RPRO)算法的性能。进行了一项详细的研究,以查看所提出的方法执行目标任务的程度。此外,研究了许多不同因素和学习过程的超参数对训练剂的性能的影响。提出的解决方案取得了非常好的结果,不仅令人满意地复制了基准算法的性能,而且还可以加快加速过程并提供更高的准确性。
摘要:随着Alphago的突破,深入的强化学习已成为解决顺序决策问题的公认技术。尽管其声誉,但由于其试验和错误学习机制引起的数据效率低下,使得深层执行学习难以在广泛的领域应用。已经开发了许多用于样本有效的深层增强学习的方法,例如环境建模,经验转移和分布式修改,其中分布式深层掌握学习表明了其在各种应用中的潜力,例如人类计算机游戏和智能运输。在本文中,我们通过比较了经典的分布式深入强化学习方法并研究重要组成部分,以实现有效的分布式学习,从而涵盖了单个玩家单位分布的深度强化学习与最复杂的多个玩家分布深度强化学习。此外,我们回顾了重新发布的工具箱,这些工具箱有助于实现分布的深度强化学习,而无需对其非分发版本进行多次修改。通过分析其优势和劣势,开发和释放了多人多代理的多代理分布式深入强化学习工具箱,这在战争游戏中得到了进一步的验证,这是一个复杂的环境,显示了针对多个玩家的拟议工具盒的可用性,多个代理和多个代理在复杂的游戏下分配了深度强化学习。最后,我们试图指出挑战和未来的趋势,希望这份简短的评论可以为有兴趣分配深入强化学习感兴趣的研究人员提供指南或火花。
分子光谱是分子与电磁辐射相互作用时的电子,振动和旋转激发的分析。它被广泛用作识别和表征材料定量和定性分析的分子的工具。摩尔的光谱是入射电磁辐射的测量吸收或发射。每个分子都为特定的光谱法产生独特的光谱,从而使光谱被用作分子的ngerprint。红外(IR)光谱法是一种光谱技术,它阐明了改变其偶极矩的分子的振动模式。1这些振动模式导致摩尔数在红外线区域吸收电磁辐射,该区域位于波数4000 - 400 cm-1的范围内。官能团在1500 cm - 1以上的峰区域中具有独特的吸光度,称为功能组区域。2
摘要 - 由于物流和仓储环境中的广泛应用,垃圾箱包装问题(BPP)最近引起了热情的研究兴趣。真正必须优化垃圾箱以使更多对象被包装到框中。对象包装顺序和放置策略是BPP的两个关键优化目标。但是,BPP的现有优化方法,例如遗传算法(GA),是高度计算成本的主要问题,准确性相对较低,因此在现实的情况下很难实施。为了很好地缓解研究差距,我们提出了一种新颖的优化方法,用于通过深度增强学习(DRL)定期形状的二维(2D)-BPP和三维(3D)-BPP,最大程度地利用空间,并最大程度地减少盒子的使用数量。首先,提出了由编码器,解码器和注意模块组成的修改指针网络构建的端到端DRL神经网络,以达到最佳对象包装顺序。第二,符合自上而下的操作模式,基于高度图的放置策略用于在框中排列有序的对象,从而防止对象与盒子中的盒子和其他对象碰撞。第三,奖励和损失功能被定义为基于对政治演员批评的框架进行培训的紧凑性,金字塔和用法数量的指标。最后,实施了一系列实验,以将我们的方法与常规的包装方法进行比较,我们从中得出结论,我们的方法在包装精度和效率方面都优于这些包装方法。
学生,MIT-WPU摘要本研究论文对深度强化学习在推动自动驾驶汽车的感知和决策方面推动进步方面所扮演的关键作用进行了简短的探索。通过深度学习和强化学习技术的融合,我们深入研究了这些方法如何协同促进在复杂且动态变化的环境中增强自动驾驶汽车的导航水平。重点是简化的演示文稿,本文提供了对自动驾驶汽车使用的各种感知算法的简洁而深刻的概述,强调对象检测,语义细分和基于激光雷达的技术。同时,它深入研究了深度强化学习的基本原理,阐明了这种合并在加强实时决策过程中的应用。承认简洁的约束,该论文简要介绍了关键方面,例如数据收集的复杂性和模型培训的关键作用。此外,该论文涉及自动驾驶部署固有的道德考虑,并强调了它们在塑造AI驱动运输的未来方面的重要性。从实际实施中汲取灵感,简洁地提出了案例研究,以说明自动驾驶汽车中深钢筋学习技术的切实整合,从而展示了其对增强导航能力的影响。1。浏览复杂的城市景观需要先进的技术。关键字:深度强化学习,自动驾驶汽车,感知算法,决策,导航,实时处理,深度学习,强化学习,道德考虑,案例研究。引言背景自动驾驶汽车已成为现代运输中的革命范式,承诺重塑人们和商品的移动方式。这些车辆配备了高级传感器,相机和处理单元,使它们能够在无人干预的情况下与环境进行导航和互动。但是,将自动驾驶汽车无缝整合到我们的日常生活中取决于他们准确地感知环境并实时做出迅速,明智的决定的能力。这项研究的重点是两个重要领域的融合:通过深度强化学习的视角,感知和决策。通过将深度学习的模式识别与强化学习的顺序决策技巧相结合,我们正在努力为自动驾驶汽车配备复杂的现实世界情景所需的工具。
抽象的深钢筋学习(DRL)已成为人工智能领域(AI)领域的变革范式,在跨不同领域的决策中提供了前所未有的能力。本文探讨了DRL对增强AI系统的决策能力的深远影响,阐明其潜在的原则,应用和含义。DRL代表了深度学习和强化学习的融合,使机器能够学习复杂的行为并通过与环境互动来学习复杂的行为并做出决策。神经网络的利用允许DRL算法处理高维输入空间,这使其非常适合涉及复杂决策过程的任务。DRL的关键优势之一在于它可以解决稀疏和延迟延迟的问题的问题,在传统的增强学习中的共同挑战。通过反复试验的过程,DRL算法可以通过在庞大的决策空间中导航,适应动态环境,并随着时间的推移最大化累积奖励,从而学习最佳决策策略。DRL的应用跨越了各个领域,包括机器人技术,财务,融资,医疗保健,游戏和自动系统。在机器人技术中,DRL促进了能够自主浏览复杂环境,执行复杂任务并适应不可预见情况的智能代理的发展。在金融中,DRL被利用用于投资组合优化,算法交易和风险管理,这表明了其彻底改变传统财务战略的潜力。
摘要 - 可以解决任务分配问题的智能决策系统对于多机器人系统以协作和自动化的方式进行工业应用至关重要,例如使用移动机器人使用移动机器人,使用无人体表面工具进行的水力调查等仓库检查等。因此,本文旨在解决多代理自动移动系统的任务分配问题,以自主,智能地将多个任务分配给机器人机器人。这种问题通常被视为与成员机器人以下任务计划分离的独立决策过程。为了避免由脱钩引起的亚最佳分配,提出了一个端到端任务分配框架,以解决此组合优化问题,同时在优化过程中考虑了后续的任务计划。该问题被称为多人多epter travely Salesmen问题(MTSP)的特殊变体。提议的端到端任务分配框架采用了深厚的强化学习方法来代替以前工作中使用的手工启发式方法。所提出的框架具有加固学习代理的模块化设计,可以针对各种应用程序进行自定义。此外,提出了基于机器人操作系统2的实体机器人实现设置,以实现仿真到现实差距。执行了仓库检查任务,以验证拟议框架的训练结果。该框架已通过模拟和实体机器人测试与各种参数设置进行了交叉验证,其中适应性和性能得到了很好的证明。
摘要 - 分解有限的多目标优化问题,其进化算法引起了相当大的关注。使用不同的算法策略,进化运算符和约束处理技术,已经开发出各种受约束的多目标优化算法(CMOEAS)。CMOEA的性能可能很大程度上取决于所使用的操作员,但是,通常很难为当前的问题选择合适的操作员。因此,改善操作员的选择是有希望的,对于CMOEAS来说是必要的。这项工作提出了一个在线操作员的选择框架,并在深入的强化学习中有助于。人口的动态,包括融合,多样性和可行性,被视为国家;候选运营商被视为行动;人口状态的改善被视为奖励。通过使用Q-Network学习策略来估计所有动作的Q值,建议的方法可以适应地选择一个操作员,该操作员根据当前状态最大程度地提高人口的改善,从而改善算法性能。该框架嵌入了四个流行的CMOEAS中,并在42个基准问题上进行了评估。实验结果表明,与九个最先进的CMOEA相比,提出的深钢筋学习辅助操作员的选择显着提高了这些CMOEAS的性能,并且所得算法获得了更好的多功能性。
抽象的心肌炎是一种严重的心血管疾病,如果不及时治疗,可能会导致严重的后果。它是由病毒感染触发的,并出现诸如胸痛和心脏功能障碍之类的症状。早期检测对于成功的治疗至关重要,心脏磁共振成像(CMR)是识别这种情况的宝贵工具。但是,由于对比度较低,噪声可变以及每名患者的多个高CMR切片的存在,使用CMR图像检测心肌炎可能具有挑战性。为了克服这些挑战,该方法融合了先进的技术,例如卷积神经网络(CNN),改进的差异进化(DE)算法(DE)算法以及用于培训的基于增强学习(RL)模型。开发这种方法由于来自德黑兰OMID医院的Z- Alizadeh Sani心肌炎的分类不平衡,提出了重大挑战。为了解决这个问题,培训过程被构建为一个顺序决策过程,在该过程中,代理会获得更高的奖励/罚款,以正确/错误地对Mi-Nority/多数派类进行分类。此外,作者提出了一种增强的DE算法来启动反向传播(BP)过程,从而克服了基于梯度的方法的初始化灵敏度问题,例如训练阶段的后退传播。通过基于标准性能指标的实验结果证明了拟议模型诊断心肌炎的有效性。总的来说,这种方法显示出加快CMR图像的分类,以自动筛查,促进早期检测和成功治疗心肌炎。