13. 外部审阅者 与合作伙伴协调编写,合作伙伴包括:NOAA 西海岸地区、NMFS、USFWS、FHWA、CDFW、俄勒冈州交通部和 WSDOT。 15. 摘要 本技术指导手册旨在为部门工程师、生物学家和顾问提供与工程方法和潜在物种影响评估、水中和近水打桩项目的环境许可以及可行的衰减选项相关的指导。第 1 至第 4 章涵盖了地基设计的基本原理、水声学的基本原理、水声对鱼类的影响以及打桩对鱼类的分析框架和流程。本文件的很大一部分是附录 I 概要,其中介绍了各种条件下的打桩数据集合,可用作许可流程的经验参考。其他附录包含生物学家和工程师可以用来促进水声影响评估的其他工具。 16. 关键词 打桩、水声学、生物声学、气泡幕、围堰、鱼听觉、鱼伤阈值、水下声衰减、振动锤、落锤、柴油冲击锤、H 型桩、钢管桩、CIDH 桩、CISS 桩。
日本邮船株式会社 (NYK)、其集团公司 Knutsen NYK Carbon Carriers AS (KNCC) 和 JFE Shoji Corporation (JFE Shoji) 最近完成了一项可行性研究,确认了用于制造 LCO 2 -EP 货罐 (以下简称“货罐”) 的生产设施、生产能力和钢材成本。这些货罐可用作 LCO 2 运输船货罐和使用高压 (EP) 模式进行 LCO 2 运输所需的陆上临时储罐。这些公司现在有明确的前景在亚洲地区建立稳定的钢材供应。根据今年 3 月签署的关于二氧化碳捕获和储存 (CCS) 战略伙伴关系的谅解备忘录,三家公司一直在研究建立稳定的大容量货罐供应网络。将继续联合开发,以尽早实施 CCS 项目。该储罐可作为LCO 2 运输船的货罐和陆上临时储罐,作为LCO 2 -EP系统*的一部分使用。储罐采用通用碳钢制成,可在现有的大口径钢管制造厂使用自动焊接机进行生产,从而可以建立交货时间短、成本低的大规模制造和供应体制。
1994年,在庆应义塾大学研究生院理工学研究科完成计算机科学博士学位,同年加入日本钢管株式会社。他于 1995 年从同一系获得学位。 1996年加入庆应义塾大学媒体网络总部。 1998年起担任该大学系统设计工程系助教。在担任专任讲师、副教授的同时,还担任东京大学兼职讲师、维也纳技术大学客座教授、信州大学特任教授。自2023年起,担任庆应义塾大学系统设计与管理研究生院教授。他的研究兴趣包括实时通信、信息和通信理论、人机界面和机器学习。博士学位(工程学)。 ■山尾宗介 2013年毕业于东北大学工学部信息情报系统科。 2015年于东北大学研究生院信息科学研究科取得信息基础科学硕士学位。 2015年加入富士通实验室有限公司。他目前是富士通实验室有限公司人工智能实验室人类推理 CPJ 的首席研究员。他的研究兴趣包括真实世界建模、AR/VR 的 3D 计算机视觉、人体运动感知以及使用大规模多模态模型的 AI 辅助系统。
2017 年 3 月,发布了新版风能发电系统国际标准 IEC 61400-12-01 [1]。第 12-1 部分涉及发电涡轮机的功率性能测量。在附件 G.2 单个顶部安装风速计和 G.4 现场安装仪器中,标准规定:“风速计应安装在一个圆形垂直管上,该管的外径与校准(和分类)时使用的外径相同(± 0.1 毫米),但不得大于风速计主体的直径。”对于不锈钢管的生产,DIN EN 10217 [2] 对焊接管外径规定了不同的公差等级。最精确的等级称为 D4,允许直径在 ± 0.5 % 以内,最小为 ± 0.1 毫米。因此,外径在 30 mm 和 40 mm 之间的管的允许公差在 ± 0.15 mm 和 ± 0.2 mm 之间。常用钢管的公差甚至更大,为 ± 1.0 %,最小为 ± 0.5 mm。这些值超过了新 IEC 标准中给出的规格。购买符合 IEC 标准规格的风速计安装管可能是一项艰巨的任务。在本研究中,评估了安装管直径变化对风速计测量结果的影响。这项研究是与 Adolf Thies GmbH & Co. KG 合作完成的。Thies 为这项研究提供了四种不同直径的安装管。管直径
原件收到日期:2024 年 12 月 7 日 接受出版日期:2024 年 2 月 8 日 Mohammed Amine Khater 机械工程博士 机构:LaRTFM,奥兰国立理工学院 MA 地址:阿尔及利亚奥兰 电子邮件:m-amine.khater@enp-oran.dz Chaaben Arroussi 机械工程博士 机构:谢里夫大学 LPTPM 实验室 地址:阿尔及利亚奥兰 电子邮件:c.arroussi@univ-chlef.dz Sid Ahmed Memchout 物理学博士 机构:奥兰 1 大学 LPCMME 实验室 地址:阿尔及利亚奥兰 电子邮件:msidahmed@hotmail.fr 摘要 本研究使用先进的有限元分析全面研究了受到轴向压缩载荷的 X60 钢管的抗屈曲性能。我们精心开发了一个详细而复杂的三维数值模型,用于分析各种关键参数在不同条件下如何影响管道的屈曲行为。所研究的关键参数包括管道的几何形状,特别是其外径和壁厚、内部压力以及钢材的机械性能,例如屈服强度和抗拉强度。研究结果表明,临界屈曲载荷对管道外径、壁厚、内部压力和屈服应力以及其他机械性能的变化高度敏感。对有限元分析结果和分析模型得出的结果进行全面比较,发现外径和壁厚具有良好的相关性,但在屈服强度方面存在很大差异,这突出了需要进一步研究的领域。
o对过去18个月的计算机事故事件报告系统(CAIARS)数据库的审查是针对涉及手持磨碎机的事件进行的。应注意的是,未报告以下事件中的事件报告处理系统(ORP)。以下是从Cairs数据库中提取的七起磨床事件的简短描述:事件(2/6/2023):一名工人正在使用研磨机并更改了刀片/碟片,并开始切割一部分钢管。光盘在支撑中撞到了一个凹槽。它向后踢,撞到了胸部的员工,导致胸部横向撕裂。工人在整个胸部区域收到10缝线,并被置于工作限制8天。事件(6/15/2023):一名工人在便携式手持式研磨机上使用砂光盘在焊缝上打扮,并拿着焊接的材料。在焊接焊缝的过程中,砂盘被固定在材料上。碟片释放时,研磨机的势头使研磨机向工人的左手行驶,抓住皮手套,然后抓住工人的左手拇指,导致拇指内部裂缝,导致四个缝合线。事件(8/14/2023):一名工人在电动机上使用电线轮。电线轮向后踢,抓住了工人的长袖衬衫,摧毁了袖子,并在左前臂上造成了磨损/烧伤。绑扎了伤害并提供了处方药。
ENME 619.55 管道系统工程完整性管理 2024/2025 学年不提供,2025/2026 学年可能可用 ENME 620 管道系统测绘工程 2024/2025 学年不提供,2025/2026 学年可能可用 ENME 622 泵站和压缩机站 2025 年冬季 ENME 624 管道经济学基础 2025 年冬季 ENME 626 管道行业腐蚀科学 2025 年冬季 ENME 628 管道涂层 2024/2025 学年不提供,2025/2026 学年可能可用 ENME 630 管道系统液体液压基础 2024 年秋季 ENME 632 管道系统气体液压基础 2024/2025 学年不提供2024/2025,可能在 2025/2026 年开放 ENME 634 管道岩土工程 2024 年秋季 ENME 636 埋地钢管道系统的结构分析 2024/2025 年不提供,可能在 2025/2026 年开放 ENME 638 管道行业的失效和断裂力学 2024/2025 年不提供,可能在 2025/2026 年开放 ENME 640 材料的应力腐蚀开裂 2024 年秋季 ENME 667 断裂力学 2024/2025 年不提供,可能在 2025/2026 年开放 ENME 669 材料疲劳 2024/2025 年不提供,可能在 2025/2026 年开放
现场制造的检修门 - 每个检修门组件都有四根直径为 1/4 英寸 (6 毫米) 和长度为 5 英寸 (127 毫米) 的螺纹杆,门开口的每个角落都焊接了一根。长度为 4-1/2 英寸 (114 毫米) 的空心钢管安装在检修盖板外侧和螺纹杆上。四个 12 号 (3 毫米) 和 4-1/2 英寸 (114 毫米) 长的钢绝缘销焊接到检修盖板上,以便安装三层 FastWrap XL。将一层 FastWrap XL 切割成与检修面板大致相同的尺寸,并将其刺穿在面板上的绝缘销上。切割第二层 FastWrap XL 以便与第一层重叠至少 1-1/2 英寸 (38 毫米)。第一层和第二层必须紧密贴合周围的包裹物,并且没有通孔。第三层和最外层应切割成与第二层绝缘层重叠至少 1-1/2 英寸 (38 毫米)。绝缘销上安装最小 1-1/2 英寸 (38 毫米) 的圆形或方形绝缘夹,以将三层绝缘层固定到检修盖板上。绝缘材料的所有切割边缘应使用宽度至少为 3 英寸 (75 毫米) 的铝箔胶带粘贴。翼形螺母和垫圈安装在四根螺纹杆上,并拧紧在空心钢管上,以将检修盖板密封到管道上。
• 现场制造的检修门:每个检修门组件都有四根直径为 0.25 英寸 (6 毫米) 和长度为 5 英寸 (127 毫米) 的螺纹杆,门开口的每个角落都焊接有一根。长度为 4.5 英寸 (114 毫米) 的空心钢管安装在检修盖板外侧和螺纹杆上方。四个 12 号 (3 毫米) 和 5 英寸 (127 毫米) 长的钢绝缘销焊接在检修盖板角落,以便安装三层 FireMaster FastWrap XLS。将一层 FireMaster FastWrap XLS 切割成与检修面板大致相同的尺寸,并将其刺穿在面板上的绝缘销上。切割第二层 FireMaster FastWrap XLS 以与第一层重叠至少 1.5 英寸 (38 毫米),每侧。第一层和第二层必须紧密贴合周围的包裹物,没有通孔。第三层和最外层应切割成与第二层绝缘层重叠,每边至少 1.5 英寸(38 毫米)。绝缘销上安装最小 1.5 英寸(38 毫米)的圆形或方形绝缘夹,以将三层绝缘层固定到检修盖板上。绝缘材料的所有切割边缘应使用宽度至少为 3 英寸(75 毫米)的铝箔胶带粘贴。翼形螺母和垫圈安装在四根螺纹杆上,并拧紧在空心钢管上,以将检修盖板密封到管道上。
• Elviage Rd 至 Byron Baseline Rd。管道长 2.6 公里,为 600 毫米钢管,于 1962 年安装。• White Oak Rd 从 Southdale Rd E 至 Exeter Rd 以西 137 米处。管道长 2.16 公里,为 600 毫米混凝土 SSP-381,于 1958 年安装。• Southdale Rd E 从 Wellington Rd 至 Pond Mills Rd。管道长 2.4 公里,为 400 毫米 DI CL-51,于 1974 年和 1975 年安装。• Springbank Dr 从 Wonderland Rd S 至与 1200 混凝土主干线的交叉口。管道为双水管,各长 1.6 公里,共长 3.2 公里,由 1938 年安装的 450 CI 组成。• Industrial Rd 从 Veteran Memorial Parkway 到 Oxford St E,Oxford St E 从 Industrial Rd 到 Cuddy Blvd,Cuddy Blvd 从 Oxford St E 到 Page St,Page St 从 Cuddy Blvd 到 Crumlin Side Road 以及 Crumlin Side Road 从 Cuddy Blvd 到 Dundas。管道总长 2.97 公里,由 1985 年和 1986 年安装的 400 DI CL51 和 450 C301L 组成。顾问公司及其供应商将采用动态响应成像 (DRI) 技术。DRI 技术采用波发生器根据管道类型和材料向管道引入振动信号。使用不同频率和各种算法使该技术能够在同一次检查中评估故障指标并检测出泄漏。该技术是非侵入性的,利用现有特征(例如消防栓、阀门、空气阀等)以及在没有现有特征的情况下利用日光坑洼。