2. 上海航天设备制造有限公司,上海 200245) 摘要:液压胀形工艺可以实现大型储罐底部的整体成形,但其质量受诸多工艺参数的影响。针对整体储罐底部液压胀形过程中出现的起皱、开裂缺陷,建立了以预胀压力、液压压力、压边力、压边圆角半径等工艺参数为优化目标的多目标优化模型。基于有限元仿真,利用Kriging技术建立工艺参数与质量标准之间的代理模型。采用NSGA-III算法,在储罐底部达到壁厚变化量最小、断裂趋势最小、翻边皱褶最小、皱褶趋势最小等目标的条件下,确定最优工艺参数。与粒子群优化(PSO)算法相比,NSGA-III算法更适合求解该优化问题。通过仿真实验验证了该方法的有效性和结果的准确性。关键词:储罐·液压成形·克里金法·NSGA-III
高管摘要加拿大是否可以足够快地建立足够快的净目标?它是否具有吸引足够投资并实现改变其能源系统和更广泛经济所需的大量项目所需的政策和监管框架?这些问题在最近的政治和政策议程上都很高。净零转换和加拿大环境的比例。在接下来的二十年中,改变加拿大的能源系统和更广泛的经济需要取代或改造大约20%的电力系统发射的电力系统;将电源系统整体加倍或翻倍;取代,脱碳或翻新四分之三的能源最终用途,这些能源最终用途为行业和社区提供热量;开发新的能源基础设施和市场,以供氢等新能源;并脱氧该国的石油和天然气行业。这是一项艰巨的任务,比在加拿大历史上以外的政策(战时除外)所做的任何事情都要大。加拿大现实的各个方面加剧了挑战。加拿大的联邦体系臭名昭著,因为使经济项目比单一体系中的经济项目更具挑战性。尤其是能量的情况。首先,电力的大多数方面是明确的省级管辖权事项。第三,需要的各种项目涉及由各种监管机构,一些联邦,许多省和新兴的,有些土著人管理的许多不同的决策过程。研究描述和方法。第二,加拿大的地理和资源财富是可观的好处,但是省级经济体,发电,温室气体排放概况和资源的变化,产生了各种省级利益和不平等,以使每个地方净零排放净。在这种背景下,积极能源对公众对能源项目决策系统的信心进行了研究。“公共”是指公民,消费者,社区和投资者的非常广泛而重叠的范围。在没有信心的情况下,加拿大将无法根据净零来改变其能源系统和更广泛的经济。这项研究探讨了一个问题,即加拿大是否可以从两个方向建立足够快的速度 - 回顾过去二十年来,通过文献综述和过去二十年来的近20个项目的概况,在接下来的二十年中,通过在投资环境中进行了三十多个领导者的一系列机密访谈,这些领导者与三十多个领导者进行了更多的资金行业,这些访谈主要来自能源行业,这些投资行业来自能源行业,并投入了投资,并投入了投资,并构成了投资和投资。
电池电池的运输超过50亿个单位,涵盖了小袋,钢罐,圆柱形和其他形式的广泛类别。它们具有高能量密度,快速充电,长期循环寿命,高安全性和高功率功能。该公司具有针对电池和电池组的完整设计和制造能力,从而赋予了消费电子产品和小型电力产品。
自 1958 年 12 月以来,巴特尔纪念研究所根据合同号进行了研究。NObs-77028、NObs-84738 和 NObs-92521,以确定氢致开裂技术是否可用于研究焊件(尤其是复杂焊件)中的残余应力。利用氢致开裂技术,焊接件由具有足够延展性的钢制成,因此在焊接过程中不会形成裂纹。焊接后,焊件通过电解氢气充电,使材料变脆,以至于残余应力形成裂纹。残余应力的分布是根据裂纹模式估计的。除了实验研究外,还进行了分析研究以确定残余应力分布与裂纹模式之间的关系。
自 1958 年 12 月以来,巴特尔纪念研究所根据合同号进行了研究。NObs-77028、NObs-84738 和 NObs-92521,以确定氢致开裂技术是否可用于研究焊件(尤其是复杂焊件)中的残余应力。利用氢致开裂技术,焊接件由具有足够延展性的钢制成,因此在焊接过程中不会形成裂纹。焊接后,焊件通过电解氢气充电,使材料变脆,以至于残余应力形成裂纹。残余应力的分布是根据裂纹模式估计的。除了实验研究外,还进行了分析研究以确定残余应力分布与裂纹模式之间的关系。
在JSW钢铁上,我们做出了选择:我们正在做以上所有事情。我们正在使用最佳可用技术,通过我们的集团公司JSW Energy过渡到可再生能源,与外部专家合作以协助我们的脱碳旅程,并引入数字工具以跟踪和监视进度。我们还认识到有必要将环境,社会和治理(ESG)考虑到我们的投资决策。不仅是投资者,而且是员工,客户,供应商,当地社区和其他利益相关者,他们希望我们设计和实施长期,可持续的政策,这些政策支持经济发展,解决环境问题并在印度的脱碳途径中起着至关重要的作用。
原件收到日期:2024 年 12 月 7 日 接受出版日期:2024 年 2 月 8 日 Mohammed Amine Khater 机械工程博士 机构:LaRTFM,奥兰国立理工学院 MA 地址:阿尔及利亚奥兰 电子邮件:m-amine.khater@enp-oran.dz Chaaben Arroussi 机械工程博士 机构:谢里夫大学 LPTPM 实验室 地址:阿尔及利亚奥兰 电子邮件:c.arroussi@univ-chlef.dz Sid Ahmed Memchout 物理学博士 机构:奥兰 1 大学 LPCMME 实验室 地址:阿尔及利亚奥兰 电子邮件:msidahmed@hotmail.fr 摘要 本研究使用先进的有限元分析全面研究了受到轴向压缩载荷的 X60 钢管的抗屈曲性能。我们精心开发了一个详细而复杂的三维数值模型,用于分析各种关键参数在不同条件下如何影响管道的屈曲行为。所研究的关键参数包括管道的几何形状,特别是其外径和壁厚、内部压力以及钢材的机械性能,例如屈服强度和抗拉强度。研究结果表明,临界屈曲载荷对管道外径、壁厚、内部压力和屈服应力以及其他机械性能的变化高度敏感。对有限元分析结果和分析模型得出的结果进行全面比较,发现外径和壁厚具有良好的相关性,但在屈服强度方面存在很大差异,这突出了需要进一步研究的领域。
钢制造伪造或废钢。主要钢是在开放式炉(OHF)或碱性氧气炉(BOF)的集成钢厂中生产的。BOF或OHF被喂入爆炸炉(BF)中的生铁(De Beer等,2003; IEA,2017)。bfs在原钢生产中发射了70%的排放。在基于废料的植物中,钢是用回收钢喂养的电弧炉(EAF)。EAFS减少废弃的钢(或通过方向还原炉还原的热金属)用电极生产粗钢。用电力作为主要能源(占排放的45%),电网的碳强度在降低废钢生产的CO 2强度中起着至关重要的作用(De Beer等,2003)。全球综合钢厂和基于废料的迷你厂工厂分别占全球生产的70%和30%(WSA,2018年)。
图 2.1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 汽轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非 Hendrina 发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示了颗粒如何呈现完美的球形并且倾向于相互粘附(Lethabo 发电站)。10 图 2.5:显微照片显示了从最小颗粒到最大球体的尺寸范围,其尺寸范围都在 100µm 以下。形状畸形的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示了尺寸范围 > 100µm 的颗粒。这里除了球体之外,还可以看到更多不规则颗粒,这些球体是半燃煤或焦炭的大颗粒(Lethabo 发电站)。11 图 3. 1:A/SI 304 不锈钢和碳钢的损耗与温度关系,注意两种材料损耗峰值的位置和大小 [BJ。23 图 3. 2:两种不同钢的损耗与温度关系,无论粒子撞击速度如何,它们的峰值损耗都发生在同一温度下 [51}。23 图 3. 3:侵蚀主导行为状态的定位以及向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。 28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性能增强 [73] 37 图 3.6:Shui 等人的图表清楚地说明了随着温度的增加,侵蚀速率呈上升趋势。 图 3.7:氮化和碳化试样的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。 40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征(1)-(7)与装置照片中的特征相对应。 46 图 4.2:腐蚀装置的照片:(1)气体火焰,(2)预热室,(3)腐蚀进料器,(4)加速管。 47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b)测试部分插入的样品室(5)。48 图 4.4:冷却部分(6)与旋风分离器和排气管(7)相连。可以看出排气管如何有效增加旋风出口管的高度。 49 图 4.5:显示重要尺寸的旋风图。 64 图 4. 6:200°G 运行期间仪器上各个位置的温度与时间的关系图。 67 图 4. 7:500°G 运行中,仪器上不同位置的温度与时间的关系图。 68 图 4.8:几种不同空气供应压力下样品最终温度与气体调节器供应压力的关系。引用的空气压力是压力调节器上显示的单位,其中 1 bar= 1 个大气压以上,即 2.026x10 5 Nm· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下颗粒和气体速度与供应压力的关系
图 2.1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 汽轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非 Hendrina 发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示了颗粒如何呈现完美的球形并且倾向于相互粘附(Lethabo 发电站)。10 图 2.5:显微照片显示了从最小颗粒到最大球体的尺寸范围,其尺寸范围都在 100µm 以下。形状畸形的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示了尺寸范围 > 100µm 的颗粒。这里除了球体之外,还可以看到更多不规则颗粒,这些球体是半燃煤或焦炭的大颗粒(Lethabo 发电站)。11 图 3. 1:A/SI 304 不锈钢和碳钢的损耗与温度关系,注意两种材料损耗峰值的位置和大小 [BJ。23 图 3. 2:两种不同钢的损耗与温度关系,无论粒子撞击速度如何,它们的峰值损耗都发生在同一温度下 [51}。23 图 3. 3:侵蚀主导行为状态的定位以及向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。 28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性能增强 [73] 37 图 3.6:Shui 等人的图表清楚地说明了随着温度的增加,侵蚀速率呈上升趋势。 图 3.7:氮化和碳化试样的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。 40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征(1)-(7)与装置照片中的特征相对应。 46 图 4.2:腐蚀装置的照片:(1)气体火焰,(2)预热室,(3)腐蚀进料器,(4)加速管。 47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b)测试部分插入的样品室(5)。48 图 4.4:冷却部分(6)与旋风分离器和排气管(7)相连。可以看出排气管如何有效增加旋风出口管的高度。 49 图 4.5:显示重要尺寸的旋风图。 64 图 4. 6:200°G 运行期间仪器上各个位置的温度与时间的关系图。 67 图 4. 7:500°G 运行中,仪器上不同位置的温度与时间的关系图。 68 图 4.8:几种不同空气供应压力下样品最终温度与气体调节器供应压力的关系。引用的空气压力是压力调节器上显示的单位,其中 1 bar= 1 个大气压以上,即 2.026x10 5 Nm· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下颗粒和气体速度与供应压力的关系